Weak Acids and Bases

K_{a}

* Ionization of weak acids is not complete, as shown by the reversible arrow.
$* \mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}($(aq) $)+\mathrm{CH}_{3} \mathrm{COO}^{-}($(aq)
* The extent of ionization can be represented using an equilibrium constant.
* K_{a} is called an acid ionization constant

$$
K_{a}=\frac{\left[H_{3} O+\right]\left[C H_{3} G O O-1\right.}{[C H 36 O O H]}
$$

Measuring Strengths of Weak Acids

* Stronger acids have large Ka_{a}
* Weaker acids have smaller K_{a}

Percent Ionization

* Ka is one measure of acid strength.
 * \% ionization is another measure of acid strength.

\% Ionization $=[H+]$ at equilibrium $\times 100$ initial concentration

Example

* Propanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$, is a weak acid. $0.10 \mathrm{~mol} / \mathrm{L}$ solution of propanoic acid had a pH of 2.96. Calculate the percent ionization for the acid.
$* \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{(\text {laq }} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}($(aq) $)+\mathrm{H}^{+}($(aq)

Solution

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{\text {lap }} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOO}_{(a \mathrm{aq})}+\mathrm{H}_{\text {tap }}$

1	0.1	0	0
0	$-x$	$+x$	$+x$
E	$0.1-x$	x	x

Solution

$$
\begin{aligned}
& * \text { Calculate the }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {using } \mathrm{pH} \\
& *\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10-\mathrm{pH} \\
& *\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.96} \\
& *\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

* Since $\mathrm{H}_{3} \mathrm{O}^{+}$is formed by the ionization of propanoic acid, this would be the equilibrium concentration

Solution

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}_{\text {lap }}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOO}_{(a \mathrm{aq})}+\mathrm{H}_{\text {tap }}$

1	0.1	0	0
0	$-x$	$+x$	$+x$
E	$0.1-1.1 \times 10^{-3}$	1.1×10^{-3}	1.1×10^{-3}

Solution

* Calculate Ka

$$
\begin{aligned}
& \mathrm{K}_{a}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OO}-1\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right.}{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOHH}\right]} \\
& \mathrm{K}_{a}=\frac{\left[1.1 \times 10^{-3}\right] 2}{\left[0.1-1.1 \times 10^{-3}\right]} \\
& K_{a}=1.2 \times 10^{-5}
\end{aligned}
$$

Solution

* Calculate the percent ionization

Percent Ionization $=\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO-1}\right.$ ionized $\times 100$ [C2H5COOH] initial

Percentlonization $=1.1 \times 10^{-3} \mathrm{M} \times 100$ 0.1 M

Percent lonization $=1.1 \%$

Measuring Strengths of Weak Bases, Kb

* The equilibrium constant is given the subscript "b" to indicate that the equilibrium involves base ionization K_{b} is called base ionization constant.

Measuring Strengths of Weak Bases, Kb

* Stronger bases have large K_{b}
* Weaker bases have smaller K_{b}

Example

* Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(1)}$ is used in the manufacturing of dyes. When dissolved in water it becomes a weak base. When a solution containing $0.0537 \mathrm{~mol} / \mathrm{L}$ of aniline is prepared, the pH was determined to be 8.68. What is the K_{b} for aniline?

Solution

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(a q)} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }_{(\text {(aq) }}+\mathrm{OH}^{(\text {aq })}$

1	0.0537	0	0
0	$-x$	$+x$	$+x$
E	$0.0537-x$	x	x

Solution

* Calculate the [OH-1 using pH
* $\mathrm{pOH}=14-8.68$
* $\mathrm{pOH}=5.32$
* $[\mathrm{OH}]=10-\mathrm{pOH}$
* $[\mathrm{OH}]=10-5.32$
* $[\mathrm{OH}-]=4.79 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$

Solution

1	0.0537	0	0
6	$-x$	$+x$	$+x$
E	$0.0537-4.79 \times 10^{-6}$	4.79×10^{-6}	4.79×10^{-6}

* Since the change is so small, you can assume the hundreds rule

Solution

* Calculate K_{b}

$$
\begin{aligned}
& \mathrm{K}_{b}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}\right][\mathrm{OH}-]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right]} \\
& \mathrm{K}_{b}=\frac{\left[4.79 \times 10^{-6}\right] 2}{[0.0537]} \\
& \mathrm{K}_{b}=4.27 \times 10^{-10}
\end{aligned}
$$

K_{a}, K_{b}, and K_{w}

* The relationship of and acid's K_{a} and it's conjugate base, K_{b} can be described as follows:

K_{a}, K_{b}, and K_{w}

* The relationship of and acid's K_{a} and it's conjugate base, K_{b} can be described as follows:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

K_{a}, K_{b}, and K_{w}

* The relationship of and acid's K_{a} and it's conjugate base, K_{b} can be described as follows:

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \\
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{OH}+\mathrm{H}_{3} \mathrm{COOH}
\end{aligned}
$$

K_{a}, K_{b}, and K_{w}

* The relationship of and acid's K_{a} and it's conjugate base, K_{b} can be described as follows:

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO} \\
\mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

K_{a}, K_{b}, and K_{w}

* The relationship of and acid's K_{a} and it's conjugate base, K_{b} can be described as follows:

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO} \\
\mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH}
\end{aligned}
$$

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$$
K_{a} K_{b}=K_{w}
$$

Example

* Calculate the K_{b} for the conjugate base of benzoic acid, $\mathrm{C}_{6} \mathrm{H} 5 \mathrm{COOH}$.

Solution

* Determine the conjugate base * $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$

Solution

* Look up the Ka value of benzoic acid

$$
* K_{a}=6.3 \times 10^{-5}
$$

Solution

* Solve for K_{b}

$$
\begin{aligned}
& * K_{b}=K_{w} / K_{a} \\
& * K_{b}=1.0 \times 10^{-14} / 6.3 \times 10^{-5} \\
& * K_{b}=1.6 \times 10^{-10}
\end{aligned}
$$

Homework

$$
\begin{aligned}
& \text { *p. } 512 \# 48 \\
& \text { *p. } 523 \# 72 \\
& \text { *p526\#83,84 }
\end{aligned}
$$

