

* lonization of weak acids is not complete, as shown by the reversible arrow.

* $CH_3COOH_{(aq)} + H_2O_{(l)} \Rightarrow H_3O^+_{(aq)} + CH_3COO^-_{(aq)}$

* The extent of ionization can be represented using an equilibrium constant.

* Ka is called an acid ionization constant

 $K_a = \frac{[H_30] + [CH_3C00]}{[CH_3C00H]}$

Measuring Strengths of Weak Acids

* Weaker acids have smaller Ka

Percent Ionization

* Ka is one measure of acid strength.

% lonization = <u>[H+] at equilibrium</u> x 100 initial concentration

* Propanoic acid, CH₃CH₂COOH, is a weak acid. 0.10 mol/L solution of propanoic acid had a pH of 2.96. Calculate the percent ionization for the acid.

Solution $CH_3CH_2COOH_{(aq)} \rightleftharpoons CH_3CH_2COO^-_{(aq)} + H^+_{(aq)}$

- * Calculate the [H₃0+] using pH
- ***** [H₃0⁺] = 10 pH
- * [H₃0+] = 10-2.96
- * $[H_30^+] = 1.1 \times 10^{-3} \text{ mol/L}$

* Since H₃O⁺ is formed by the ionization of propanoic acid, this would be the equilibrium concentration

Solution $CH_3CH_2COOH_{(aq)} \rightleftharpoons CH_3CH_2COO^{-}_{(aq)} + H^{+}_{(aq)}$

* Calculate Ka

$K_a = [C_2H_5OO^{-1}]$

[C2H500H]

$K_a = [1.1 \times 10^{-3}]^2$

[0.1- 1.1 x 10 -3]

$K_a = 1.2 \times 10^{-5}$

* Calculate the percent ionization

Percent Ionization = $\frac{C_2H_5COO^{-1}_{ionized}}{C_2H_5COOH_1} \times 100$

Percent Ionization = $\frac{1.1 \times 10^{-3} \text{ M}}{0.1 \text{ M}} \times 100$

Percent Ionization = 1.1%

Measuring Strengths of Weak Bases, K_b

The equilibrium constant is given the subscript "b" to indicate that the equilibrium involves base ionization K_b is called base ionization constant.

Measuring Strengths of Weak Bases, K_b

* Weaker bases have smaller Kb

* Aniline, C₆H₅NH_{2(I)} is used in the manufacturing of dyes. When dissolved in water it becomes a weak base. When a solution containing 0.0537 mol/L of aniline is prepared, the pH was determined to be 8.68. What is the K_b for aniline?

Solution

* Calculate the COH-1 using pH

***** pOH = 14 - 8.68

* [OH-] = 10 -pOH

***** [OH-] = 10 -5.32

* $[0H^{-1}] = 4.79 \times 10^{-6} \text{ mol/L}$

* Calculate K_b

$K_{b} = [C_{6}H_{5}NH_{3}^{+}][OH_{-}]$

[C6H5NH2]

$K_b = [4.79 \times 10^{-6}]^2$

[0.0537]

$K_b = 4.27 \times 10^{-10}$

 $CH_3COOH + H_2O \rightleftharpoons H_3O^* + CH_3COO^-$

 $CH_{3}COOH + H_{2}O \rightleftharpoons H_{3}O^{+} + CH_{3}COO^{-}$

 $CH_{3}COO^{-} + H_{2}O \rightleftharpoons OH^{-} + CH_{3}COOH$

 $CH_3COOH + H_2O \rightleftharpoons H_3O^* + CH_3COO^-$

 $CH_{3}COO^{-} + H_{2}O \rightleftharpoons OH^{-} + CH_{3}COOH$

$$2H_20 \rightleftharpoons 0H^- + H_30^+$$

 $CH_3COOH + H_2O \rightleftharpoons H_3O^* + CH_3COO^-$

 $CH_{3}COO^{-} + H_{2}O \rightleftharpoons OH^{-} + CH_{3}COOH$

$$2H_20 \rightleftharpoons 0H^- + H_30^+$$

KaKb=Kw

* Calculate the K_b for the conjugate base of benzoic acid, C₆H₅COOH.

* Determine the conjugate base

* C6H5COO-

* Look up the Ka value of benzoic acid

$K_b = K_w/K_a$

* $K_b = 1.0 \times 10^{-14} / 6.3 \times 10^{-5}$

***** $K_b = 1.6 \times 10^{-10}$

* p. 512 # 48 * p. 523 # 72 * p 526 # 83, 84

```
Saturday, May 26, 18
```