Unit 4 Review

-What is meant by the term dynamic equilibrium?

- What are the three types of equilibria we covered in class?
- What does Keq describe? Using Keq, how would you know when products are favored? Reactants?
- What happens to a systems in equilibriums when: The concentration of reactants is increased, the concentration of products is increased, the concentration of reactant is decreased, temperature is increased, temperature is decreased, a catalyst is added, pressure is increased, volume is increased.
- Know what the hundred rule is and when to apply it.
- What is reaction quotient? How can it help you determine the direction of the reaction?
- What does Ksp stand for? How can it be used to determine if a precipitate will form?
- List properties of both acids and bases.
- What is Arrhenius' definition of an acid? Bronsted-Lowry?
- What does the term amphoteric mean?
- Do strong acids ionize completely in water? What about weak acids?
- What salts may be acidic in water? Basic?
- What is a buffer and how do they work?
- What does K_{a} stand for and how does it relate to the strength of an acid. K_{b} ?
- What is titration? What are the products of titration always going to be?
- Describe how to identify the equivalence point.

Skills

- Be able to write a $K_{\text {eq }}$ expressions
- Calculate $K_{\text {eq }}$ using a variety of methods (initial concentration, partial pressures, ICE table)
- Use the quadratic formula to solve for equilibrium concentration.
- Use K_{sp} to solve for the equilibrium concentration of various ions.
- Use solubility to solve for $\mathrm{K}_{\text {sp }}$
- Calculate pH using pOH or concentration of hydrogen
- Calculate percent ionization
- Calculate K_{a} and K_{b} using pH and initial concentration

Practice Problems:

In a 5 L flask, 0.1 mols of $\mathrm{N}_{2(\mathrm{~g})}$ and 0.3 moles of $\mathrm{NH}_{3(\mathrm{~g})}$ was recorded. If $\mathrm{K}_{\text {eq }}=3.1 \times 10^{-2}$, what is the concentration of $\mathrm{H}_{2(\mathrm{~g})}$ at equilibrium?

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

$\mathrm{Br}_{2(\mathrm{~g})}$ and $\mathrm{Cl}_{2(\mathrm{~g})}$ establish an equilibrium to form BrCl . The $\mathrm{K}_{\text {eq }}$ for this reaction is 28.8. If 8.0 mol of $\mathrm{Br}_{2(\mathrm{~g})}$ and 8.0 mol of $\mathrm{Cl}_{2(\mathrm{~g})}$ are initially placed into a 2 L flask, what is the concentration of BrCl at equilibrium?

$$
\mathrm{Br}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{BrCl}_{(\mathrm{g})}
$$

9.8 mol of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ was initially placed into an 8 L flask and was allowed to come to equilibrium. If the $\mathrm{K}_{\text {eq }}$ for the equation is 8.9×10^{-11}, what is the equilibrium concentration of $\mathrm{NO}_{2(\mathrm{~g})}$?

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

At a single point it time, it was determined that a reaction contained $0.3 \mathrm{M}_{2}, 0.5 \mathrm{M} \mathrm{H}$, and $1.0 \mathrm{M} \mathrm{NH}_{3}$. If $\mathrm{K}_{\text {eq }}$ for the reaction is 50 , is the reaction at equilibrium when the measurements were taken?

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

The solubility of silver sulfide, $\mathrm{Ag}_{2} \mathrm{~S}$ is $3.0 \times 10^{-3} \mathrm{M}$. What is the K_{sp} of silver sulfide dissolving in water?

The $\mathrm{K}_{\text {sp }}$ of NaCl is 1.38 . What is the equilibrium concentration of chloride ions in a saturated solution?

What is the pH of a solution containing $3.0 \mathrm{M} \mathrm{H}_{3} \mathrm{O}+$ ions?
What is the pOH of a solution containing $3.0 \times 10^{-4} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$ions?
Propanoic acid is a weak acid. If 1.0 M solution has a pH of 3.8 , calculate the percent ionization of propanoic acid.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}+\mathrm{H}_{3} \mathrm{O}+
$$

Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, is a weak base. If 0.38 M solution has a pH of 10.98 , what is the percent ionization of pyridine?

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}^{+}+\mathrm{OH}^{-}
$$

50 mL of 1.0 M LiOH is titrated with 1.3 M HF . Calculate the pH after the addition of 35 mL of HF .

$$
\mathrm{LiOH}+\mathrm{HF} \rightarrow \mathrm{LiF}+\mathrm{H}_{2} \mathrm{O}
$$

