Unit 4 Review

- What is meant by the term dynamic equilibrium?
- · What are the three types of equilibria we covered in class?
- What does Keq describe? Using Keq, how would you know when products are favored? Reactants?
- What happens to a systems in equilibriums when: The concentration of reactants is increased, the concentration of products is increased, the concentration of reactant is decreased, temperature is increased, temperature is decreased, a catalyst is added, pressure is increased, volume is increased.
- Know what the hundred rule is and when to apply it.
- What is reaction quotient? How can it help you determine the direction of the reaction?
- What does Ksp stand for? How can it be used to determine if a precipitate will form?
- · List properties of both acids and bases.
- What is Arrhenius' definition of an acid? Bronsted-Lowry?
- What does the term amphoteric mean?
- Do strong acids ionize completely in water? What about weak acids?
- What salts may be acidic in water? Basic?
- · What is a buffer and how do they work?
- What does K_a stand for and how does it relate to the strength of an acid. K_b ?
- What is titration? What are the products of titration always going to be?
- Describe how to identify the equivalence point.

Skills

- Be able to write a Keq expressions
- Calculate K_{eq} using a variety of methods (initial concentration, partial pressures, ICE table)
- Use the quadratic formula to solve for equilibrium concentration.
- Use K_{sp} to solve for the equilibrium concentration of various ions.
- Use solubility to solve for K_{sp}
- Calculate pH using pOH or concentration of hydrogen
- Calculate percent ionization
- Calculate K_a and K_b using pH and initial concentration

SCH 4U J. Kropac

Practice Problems:

In a 5 L flask, 0.1 mols of $N_{2(g)}$ and 0.3 moles of $NH_{3(g)}$ was recorded. If K_{eq} =3.1 x 10⁻², what is the concentration of $H_{2(g)}$ at equilibrium?

 $N_2 + 3H_2 \rightleftharpoons 2NH_3$

 $Br_{2(g)}$ and $Cl_{2(g)}$ establish an equilibrium to form BrCl. The K_{eq} for this reaction is 28.8. If 8.0 mol of $Br_{2(g)}$ and 8.0 mol of $Cl_{2(g)}$ are initially placed into a 2 L flask, what is the concentration of BrCl at equilibrium?

 $Br_{2(g)} + Cl_{2(g)} \rightleftharpoons 2BrCl_{(g)}$

9.8 mol of N₂O_{4(g)} was initially placed into an 8 L flask and was allowed to come to equilibrium. If the K_{eq} for the equation is 8.9 x 10⁻¹¹, what is the equilibrium concentration of NO_{2(g)}?

 $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$

At a single point it time, it was determined that a reaction contained 0.3 M N₂, 0.5 M H₂, and 1.0 M NH₃. If K_{eq} for the reaction is 50, is the reaction at equilibrium when the measurements were taken?

$$N_2 + 3H_2 \! \rightleftharpoons \! 2NH_3$$

The solubility of silver sulfide, Ag_2S is 3.0 x 10⁻³ M. What is the K_{sp} of silver sulfide dissolving in water?

The K_{sp} of NaCl is 1.38. What is the equilibrium concentration of chloride ions in a saturated solution?

What is the pH of a solution containing 3.0 M H_3O^+ ions?

What is the pOH of a solution containing 3.0 x 10^{-4} M H₃O⁺ ions?

Propanoic acid is a weak acid. If 1.0 M solution has a pH of 3.8, calculate the percent ionization of propanoic acid.

 $CH_{3}CH_{2}COOH \rightleftharpoons CH_{3}CH_{2}COO^{-} + H_{3}O +$

Pyridine, C_5H_5N , is a weak base. If 0.38 M solution has a pH of 10.98, what is the percent ionization of pyridine?

 $C_5H_5N \rightleftharpoons C_5H_5N^+ + OH^-$

50 mL of 1.0 M LiOH is titrated with 1.3 M HF. Calculate the pH after the addition of 35 mL of HF.

 $LiOH + HF \rightarrow LiF + H_2O$