Unit 3 Test Review

Concepts

- Temperature vs thermal energy, exothermic vs endothermic, open vs close system
- First and second law of thermodynamics
- Rate of reactions
- Average vs instantaneous reaction rates
- Collision theory
- Effective vs ineffective collision, transition state vs activated complex
- Rate determining step
- Factors that may impact reaction rate
- First order vs second order reactions
- Symbol and units for:
- Specific heat capacity
- Heat
- Molar Enthalpy
- Enthalpy of a system (reaction)

Skills

- Be able to calculate:
- Heat of a reaction
- Molar enthalpy of a substance
- Number of moles using mass of concentration
- Use data from calorimetry to solve for molar enthalpy
- Use Hess's Law to determine total enthalpy
- Use the standard enthalpy of formation
- Calculate rate of reaction
- Be able to recognize a first and second order reaction

Practice Questions:

1) A 7.0 g sample of cesium is sealed in a vial and placed into a calorimeter containing 250.0 mL of water at $90.00^{\circ} \mathrm{C}$. When the cesium had melted, the temperature of the water had dropped to $88.98{ }^{\circ} \mathrm{C}$. Determine the molar heat of fusion for cesium in $\mathrm{kJ} / \mathrm{mol}$.
2) A 12.7 g sample of sulfur (S 8) is burned in a calorimeter. The calorimeter contains 2.20 kg of water at $21.08^{\circ} \mathrm{C}$. The reaction mixture is ignited and the temperature rises to $33.88^{\circ} \mathrm{C}$. From this data, calculate the molar heat of combustion of sulfur. Assume $\mathrm{Q}=100 \mathrm{~J}$ of energy.
3) Calculate the mass of pentane required to combust to heat 250.0 g of water at $-6^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The enthalpy of combustion for pentane is $-3509 \mathrm{~kJ} / \mathrm{mol}$. The formula for pentane is $\mathrm{C}_{5} \mathrm{H}_{12}$.

SCH 4U
J. Kropac
4) Calculate H fort he reaction:
$3 \mathrm{~N}_{2} \mathrm{H}_{4(\mathrm{l})}+4 \mathrm{ClF}_{3(\mathrm{~g})} \rightarrow 3 \mathrm{~N}_{2(\mathrm{~g})}+12 \mathrm{HF}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
use the following data:

$$
\begin{array}{ll}
2 \mathrm{CIF}_{3(\mathrm{~g})}+2 \mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+6 \mathrm{HF}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} & \Delta \mathrm{H}=-1196 \mathrm{~kJ} \\
\mathrm{~N}_{2} \mathrm{H}_{4(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} & \Delta \mathrm{H}=-622 \mathrm{~kJ} \\
4 \mathrm{NH} 3(\mathrm{~g})+3 \mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-1530 \mathrm{~kJ}
\end{array}
$$

5) For each of the following, calculate the enthalpy change for each reaction, $\Delta \mathrm{Hf}$. Provide your answer in kJ.

$$
\begin{aligned}
& \mathrm{NaOH}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{g})} \rightarrow \mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& 2 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{SO}_{2(\mathrm{~g})} \\
& 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
\end{aligned}
$$

Compound $\Delta \mathbf{H f}(\mathrm{kJ} / \mathrm{mol})$

$\mathrm{CH}_{4}(\mathrm{~g})-74.8$	$\mathrm{CO}_{2(\mathrm{~g})}-393.5$	$\mathrm{NaCl}_{(\mathrm{s})}-411.0$	$\mathrm{H} 2 \mathrm{O}_{(\mathrm{l})}-285.8$
$\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}-20.1$	$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})}-811.3$	$\mathrm{MgSO}_{4(\mathrm{~s})}-1278.2$	$\mathrm{MnO}_{(\mathrm{s})}-384.9$
$\mathrm{MnO}_{2(\mathrm{~s})}-519.7$	$\mathrm{NaCl}_{(\mathrm{s})}-411.0$	$\mathrm{NaF}_{(\mathrm{s})}-569.0$	$\mathrm{NaOH}_{(\mathrm{s})}-426.7$
$\mathrm{NH}_{3(\mathrm{~g})}-46.2$	$\mathrm{HCl}_{(\mathrm{g})}-92.3$	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}-241.8$	$\mathrm{SO}_{2(\mathrm{~g})}-296.1$
$\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}-315.4$	$\mathrm{NO}_{(\mathrm{g})}+90.4$	$\mathrm{NO}_{2(\mathrm{~g})}+33.9$	$\mathrm{SnCl}_{4(\mathrm{l})}-545.2$
$\mathrm{SnO}_{(\mathrm{s})}-286.2$	$\mathrm{SnO}_{2(\mathrm{~s})}-580.7$	$\mathrm{SO}_{2(\mathrm{~g})}-296.1$	$\mathrm{SO}_{3(\mathrm{~g})}-395.2$
$\mathrm{ZnO}_{(\mathrm{s})}-348.0$	$\mathrm{ZnS}_{(\mathrm{s})}-202.9$		

6) If kHI is $1.8 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, [I2] is 4.0 M and $\left[\mathrm{H}_{2}\right]$ is 2.0 M , find the reaction rate for the following reaction. Assume it is first order with respect to both reactants.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HI}_{(\mathrm{g})}
$$

