SCH 4U J. Kropac

Unit 3 Test Review

Concepts

- Temperature vs thermal energy, exothermic vs endothermic, open vs close system
- First and second law of thermodynamics
- Rate of reactions
- Average vs instantaneous reaction rates
- Collision theory
 - · Effective vs ineffective collision, transition state vs activated complex
- Rate determining step
- · Factors that may impact reaction rate
- · First order vs second order reactions
- Symbol and units for:
 - Specific heat capacity
 - Heat
 - Molar Enthalpy
 - Enthalpy of a system (reaction)

Skills

- Be able to calculate:
 - · Heat of a reaction
 - Molar enthalpy of a substance
 - Number of moles using mass of concentration
 - · Use data from calorimetry to solve for molar enthalpy
 - Use Hess's Law to determine total enthalpy
 - Use the standard enthalpy of formation
 - Calculate rate of reaction
 - · Be able to recognize a first and second order reaction

Practice Questions:

- A 7.0 g sample of cesium is sealed in a vial and placed into a calorimeter containing 250.0 mL of water at 90.00 °C. When the cesium had melted, the temperature of the water had dropped to 88.98 °C. Determine the molar heat of fusion for cesium in kJ/mol.
- A 12.7 g sample of sulfur (S8) is burned in a calorimeter. The calorimeter contains 2.20 kg of water at 21.08 °C. The reaction mixture is ignited and the temperature rises to 33.88 °C. From this data, calculate the molar heat of combustion of sulfur. Assume Q= 100 J of energy.
- 3) Calculate the mass of pentane required to combust to heat 250.0 g of water at -6°C to 85°C. The enthalpy of combustion for pentane is –3509 kJ/mol. The formula for pentane is C5H12.

SCH 4U J. Kropac

4) Calculate H fort he reaction:

$$3\mathsf{N}_2\mathsf{H}_{4(\mathrm{I})} + 4\mathsf{CIF}_{3(\mathrm{g})} \rightarrow 3\mathsf{N}_{2(\mathrm{g})} + 12\mathsf{HF}_{(\mathrm{g})} + 2\mathsf{CI}_{2(\mathrm{g})}$$

use the following data:

$2CIF_{3(g)} + 2NH_{3(g)} \rightarrow N_{2(g)} + 6HF_{(g)} + CI_{2(g)}$	ΔH=-1196kJ
$N_2H_{4(l)} + O_{2(g)} \rightarrow N_{2(g)} + 2H_2O_{(l)}$	ΔH=-622kJ
4NH3(g) +3O2(g) →2N2(g) +6H2O(l)	ΔH=-1530kJ

5) For each of the following, calculate the enthalpy change for each reaction, Δ Hf. Provide your answer in kJ.

Compound Δ Hf (kJ/ mol)

CH ₄ (g) -74.8	CO _{2(g)} -393.5	NaCl _(s) -411.0	H2O(1) -285.8
$H_2S(g)$ -20.1	H ₂ SO ₄₍₁₎ -811.3	MgSO _{4(s)} -1278.2	MnO _(s) -384.9
MnO _{2(s)} -519.7	NaCl _(s) -411.0	$NaF_{(s)}$ -569.0	NaOH(s) -426.7
NH _{3(g)} -46.2	HCl _(g) -92.3	H ₂ O _(g) -241.8	SO _{2(g)} -296.1
NH4Cl _(s) -315.4	NO _(g) +90.4	NO _{2(g)} +33.9	SnCl ₄₍₁₎ -545.2
SnO _(s) -286.2	SnO _{2(s)} -580.7	SO _{2(g)} -296.1	SO _{3(g)} -395.2
ZnO _(s) -348.0	ZnS _(s) -202.9		

6) If kHI is 1.8 x 10⁻⁴ M⁻¹s⁻¹, [I2] is 4.0 M and [H₂] is 2.0 M, find the reaction rate for the following reaction. Assume it is first order with respect to both reactants.

 $\mathsf{H}_{2(g)} + \mathsf{I}_{2(g)} \rightarrow 2\mathsf{H}\mathsf{I}_{(g)}$