Total Internal Reflection

Total Internal Reflection

* When light travels from one medium to another, some is reflected and some is refracted.
* As light enters a lighter medium, it bends away from the normal

Total Internal Reflection

* Critical angle: the angle of incidence that will result in a refraction of 90°

Total Internal Reflection

* If you increase the angle of incidence past the critical angle, the refracted ray will no longer exit the medium * Instead it will reflect back

Total Internal Reflection

* If you increase the angle of incidence past the critical angle, the refracted ray will no longer exit the medium * Instead it will reflect back

* Total Internal Reflection occurs when

 two conditions are met:* i) Light is travelling more slowly in the first medium than in the second
* ii) The angle of incidence is larger than the critical angle

Index of Refraction

Index of Refraction

* Every medium has an index of refraction (n), which is the ratio of the speed of light in a vacuum to the speed of light in the medium

Index of Refraction

* $n_{\text {medium }}=c / V$
* Where:
* $v=$ speed of light in any medium
* $c=$ speed of light in a vacuum $=3.00 \mathrm{x}$
$10^{8} \mathrm{~m} / \mathrm{s}$

Example

* The speed of light of sodium chloride is $1.96 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Calculate the index of refraction for sodium chloride.

Solution

* Given:

$$
\begin{aligned}
& * c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& * v=1.96 \times 10^{8}
\end{aligned}
$$

* Analysis and Solution:
* $n=c / v$
* $n=3.00 \times 10^{8} / 1.96 \times 10^{8}$
* 1.53

Angle of Refraction

* The angle of refraction can be found using: Snell's Law
* nl $\sin \theta 1=n 2 \sin \theta 2$
* Or

> * n2v2 = nlv1

Example

* Light travels from air into glass. Glass has an index of refraction of 1.52 and air has an index of refraction of 1.00 .
* a) Which direction does the light bend?
* b) If the angle of incidence entering is 22°, what is the angle of refraction?

Solution

* a) Which direction does the light bend?
* The light will be moving slower in glass, so it will bend toward the normal

Solution

 * b) If the angle of incidence entering is 22°, what is the angle of refraction? * Given:* $n_{\text {air }}=1.00$ * nglass $=1.52$

Solution

 * b) If the angle of incidence entering is 22°, what is the angle of refraction? * Given:* $n_{\text {air }}=1.00$ * nglass $=1.52$

Solution

* n1 $\sin \theta 1=n 2 \sin \theta 2$
* (1.00) $(\sin 22)=1.52(\sin \theta 2)$
* (1.00)(0.3746) $=1.52(\sin \theta 2)$
* 0.3746=1.52 (sin $\theta 2)$
* $\sin \theta 2=0.3746 / 1.52$
* $\sin \theta 2=0.247$
* $\theta 2=\sin ^{-1}(0.247)$
* $\theta 2=14.3$

Homework

$$
\text { *p. } 525 \# 2,3,6,9
$$

Index of Refraction Lab

* p. 520 in your textbook

* Work in partners
* Purpose
* Materials
* Observations
* Analyze: a\&c

