

bends away from the normal

* Critical angle: the angle of incidence that will result in a refraction of 90°

* If you increase the angle of incidence past the critical angle, the refracted ray will no longer exit the medium

* Instead it will reflect back

* If you increase the angle of incidence past the critical angle, the refracted ray will no longer exit the medium

* Instead it will reflect back

* Total Internal Reflection occurs when two conditions are met:

* i) Light is travelling more slowly in the first medium than in the second

* ii) The angle of incidence is larger than the critical angle

Index of Refraction

Index of Refraction

* Every medium has an index of refraction (n), which is the ratio of the speed of light in a vacuum to the speed of light in the medium

* v = speed of light in any medium

* c = speed of light in a vacuum = 3.00 x 10⁸ m/s

* The speed of light of sodium chloride is 1.96 x 10⁸ m/s. Calculate the index of refraction for sodium chloride.

- $* c = 3.0 \times 10^8 m/s$
- ***** v= 1.96 x 10⁸
- * Analysis and Solution:
 - * n= c/v
 - ***** n=3.00 x 10⁸ / 1.96 x 10⁸
 - * 1.53

Angle of Refraction

* The angle of refraction can be found using: Snell's Law

* $nlsin \theta 1 = n2sin \theta 2$

* Light travels from air into glass. Glass has an index of refraction of 1.52 and air has an index of refraction of 1.00.

* a) Which direction does the light bend?

* b) If the angle of incidence entering is 22°, what is the angle of refraction?

Solution

- * a) Which direction does the light bend?
 - * The light will be moving slower in glass, so it will bend toward the normal

Index of Refraction Lab

* p. 520 in your textbook

- * Purpose
- * Materials
- * Observations
- * Analyze: a & c