

Avagadro

* In 1811, Amedeo Avagradro determined that any convenient quantity of matter must contain an enormous number of atoms, ion, molecules, ect.

* If we look at the quantity of items equal to 6.02 x 10²³, we call this a mole.

This is also know as
 Avagadro's Number, NA

* A mole is just a quick way of summarizing large quantities.

* A pair giraffes:

* A mole (6.02 x 10²³) of giraffes

Converting Mole to # of Particles

* Converting Moles to Number of Particles

* N= n x NA

- * N= Number of particles (atoms, molecules, ect)
- * n= number of moles
- * N_A = Avagadro's constants (6.023 x 10²³)

* A sample contains 1.25 mole of nitrogen dioxide, NO₂, how many molecules are in the sample?

* n=1.25 mol

* NA = 6.023×10^{23}

*	G	iv	e	n

- * n=1.25 mol
- * NA = 6.023 x 10²³
- * Required
 - * N=nxNA
 - * N = 1.25 x (6.023 x 10²³)
 - * N = 7.52 x 10²³

Atomic Mass

Molar Mass: sum of the total mass of all atoms that make up one mole of substance

On the periodic table, atomic weight is equal to the mass of one mole of substance.

* Example: What is the molar mass of one mole of sodium?

* Example: Eg: Determine the mass of one molecule of carbon dioxide, CO₂

* What is the molar mass of each of the following?

* Example: Molar mass of alanine, C3H7NO2

- ***** C= 3 x 12.01 g = 36.03 g
- ***** H= 7 x 1.01 = 7.07 g
- * N= 1 x 14.01 g
- ***** 0 = 2 x 16.00 g = 32 g
- * TOTAL: 89.01 g/mol

* Molar mass of Al(NO3)3

- * Al = 1 x 26.98 g = 26.98
- * N= 3 x 14.01 g = 42.03 g
- ***** 0 = 9 x 16.00 g = 144 g

* TOTAL= 213.01 g/mol

Converting From Mass to Moles

N

M

- * We know that molar mass represents the mass in grams per mole of substance (g/mol)
- * Therefore, M= m/n
 - * Where M= molar mass
 - * Where m = mass

Converting to Mass

* To convert to mass from number of moles * Mass= Number of Moles x Molar Mass

M

M

И

* m = n x M

* What is the mass of 2.0 moles of Na?

* m = n x M

* m = 2.0 mols x 23 g/mol

Therefore the mass of 2.0 mols of Na is 46 g.

* How many moles are in 57.5 g of Na?

* Given: m=57.5g M=23.00 g/mol (from periodic)

Therefore there are 2.5 moles in 57.5 g of Na.

How to calculate number of atoms from mass

How to calculate number of atoms from mass

- How to calculate number of atoms from mass
- * 1) Step 1: Calculate the number of moles using n = m / M
- * 2) Step 2: Calculate the number of atoms using N= n x N_A

Calculate the number of atoms of gold in a 275.8g nugget of pure gold.

* M=196.97 g/mollfrom periodic table)

* n = m / M

* n=1.40 mol

Therefore there are 2.5 moles in 1.40g of Au.

How many particles are in 1.40 mol of Au? Given: n n NA

* N = 1.40 x 6.02×10^{23}

* N=8.43 x 10²³ atoms

* Therefore there are 8.43 x 10²³ atoms in one nugget of gold.

* How many atoms of sulphur are in a 230.0g sample of pure sulphur?