The Mole

Avagadro

* In 1811, Amedeo Avagradro determined that any convenient quantity of matter must contain an enormous number of atoms, ion, molecules, ect.

Mole

* If we look at the quantity of items equal to 6.02 x 1023. we call this a mole.
* This is also know as Avagadro's Number, N_{A}

* A mole is just a quick way of summarizing large quantities.
* A pair giraffes:

* A pair giraffes:

* A mole $\left(6.02 \times 10^{23}\right)$ of giraffes

Converting Mole to \# of

 Particles* Converting Moles to Number of Particles
* $N=n \times N_{A}$
* $N=$ Number of particles latoms, molecules, ect)
* $n=$ number of moles
* $N_{A}=$ Avagadrós constants $\left(6.023 \times 10^{23}\right)$

Example

* A sample contains 1.25 mole of nitrogen dioxide, NO_{2}, how many molecules are in the sample?

Example

* Given
* $n=1.25 \mathrm{~mol}$
* $N A=6.023 \times 10^{23}$
* Required
* N

Example

* Given
* $n=1.25 \mathrm{~mol}$
* $N A=6.023 \times 10^{23}$
* Required

$$
\begin{aligned}
& * N=n \times N_{A} \\
& * N=1.25 \times\left(6.023 \times 10^{233}\right) \\
& * N=7.52 \times 10^{23}
\end{aligned}
$$

Atomic Mass

* Atomic Mass: The mass of one atom of an element
6.941

Molar Mass

* Molar Mass: sum of the total mass of all atoms that make up one mole of substance

Molar Mass

* On the periodic table, atomic weight is equal to the mass of one mole of substance.
* Example: What is the molar mass of one mole of sodium?

Molar Mass

* Example: Eg: Determine the mass of one molecule of carbon dioxide, CO_{2}

Practice

* What is the molar mass of each of the following?
- A) $\mathrm{H}_{2} \mathrm{~S}$
* $B \mathrm{SOO}_{3}$
* CJPO_{3}

Practice

* Example: Molar mass of alanine, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$

$$
\begin{aligned}
& * C=3 \times 12.01 \mathrm{~g}=36.03 \mathrm{~g} \\
& * H=7 \times 1.01=7.07 \mathrm{~g} \\
& * N=1 \times 14.01 \mathrm{~g} \\
& * O=2 \times 16.00 \mathrm{~g}=32 \mathrm{~g} \\
& \text { * TOTAL: } 89.01 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Example

* Example molar mass of an ionic compound
* Molar mass of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
* $A 1=1 \times 26.98 \mathrm{~g}=26.98$
* $N=3 \times 14.01 \mathrm{~g}=42.03 \mathrm{~g}$
* $0=9 \times 16.00 \mathrm{~g}=144 \mathrm{~g}$
* TOTAL $=213.01 \mathrm{~g} / \mathrm{mol}$

Try lt!

* Calculate the molar mass of each of the following
* $\mathrm{C}_{6} \mathrm{H}_{6}$
* $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
* $\mathrm{K}_{3} \mathrm{PO}_{4}$
* NH_{3}

Answers

* Answers:
* $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{M}=78.0 \mathrm{~g} / \mathrm{mol}$
* $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{M}=261.35 \mathrm{~g} / \mathrm{mol}$
* $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{M}=212.27 \mathrm{~g} / \mathrm{mol}$
* $\mathrm{NH}_{3}, \mathrm{M}=17.04 \mathrm{~g} / \mathrm{mol}$

Converting From Mass to Moles

* We know that molar mass represents the mass in grams per mole of substance (g/mol)
* Therefore, $M=m / n$
* Where $M=$ molar mass
* Where $m=$ mass

* Where $n=$ number of moles

Converting to Mass

* To convert to mass from number of moles
* Mass= Number of Moles x Molar Mass
* $m=n \times M$

Example

* What is the mass of 2.0 moles of Na ?

Example

* What is the mass of 2.0 moles of Na ?
 * $m=n \times M$
 * $m=2.0$ mols $\times 23 \mathrm{~g} / \mathrm{mol}$

Therefore the mass of 2.0 mols of Na is 46 g .

Example

* How many moles are in 57.5 g of Na ?

Example

* How many moles are in 57.5 g of Na ?
* $n=m / M$
* Given: $m=57.5 \mathrm{~g}$
$M=23.00 \mathrm{~g} / \mathrm{mol}$ (from periodic)

Example

$$
\text { * } n=\frac{57.5 \mathrm{~g}}{23.00 \mathrm{~g} / \mathrm{mol}}
$$

* $n=2.5 \mathrm{~mol}$

Therefore there are 2.5 moles in 57.5 g of Na .

How to calculate number of atoms from mass

* Remember

How to calculate number of atoms from mass

* How to calculate number of atoms from mass
* 1) Step 1: Calculate the number of moles using $n=m / M$
* 2) Step 2: Calculate the number of atoms using $N=n \times N_{A}$

Example

* Calculate the number of atoms of gold in a 275.8 g nugget of pure gold.

Example

* How many moles are in 275.8 g of Au?
* Given:
* $m=275.8 \mathrm{~g}$
m
* $M=196.97 \mathrm{~g} / \mathrm{mol}$ (ffrom periodic table)

Example

* $n=m / M$

* $n=\frac{275.8 \mathrm{~g}}{196.97 \mathrm{~g} / \mathrm{mol}}$
* $n=1.40 \mathrm{~mol}$

Therefore there are 2.5 moles in 1.40 g of Au .

Example

* How many particles are in 1.40 mol of Au?
* Given:

$$
\text { * } n=1.40 \mathrm{~mol}
$$

$$
\text { * } N_{A}=6.02 \times 10^{23}
$$

Example

* $N=n \times N A$
* $N=1.40 \times 0.02 \times 10^{23}$
* $N=8.43 \times 10^{23}$ atoms
* Therefore there are 8.43×10^{23} atoms in one nugget of gold.

Try It!

* How many atoms of sulphur are in a 230.0 g sample of pure sulphur?

