Energy Changes and Rates of Reaction

Thermochemistry

- * Thermochemistry: The study of the energy changes that accompany physical or chemical changes in matter.
- * Changes can be classified as:
 - * Physical (hydrogen boils at -252)
 - * Chemical (hydrogen burns as fuel)
 - Nuclear (hydrogen undergoes nuclear fusion)

Thermal Energy - energy available from a substance as a result of the motion of its molecules

* Temperature (T) - the average kinetic energy of the molecules in a sample, measured in °C or K

Heat (q) - amount of energy transferred between substances, measured in Joules (J)

Energy flows between substances because of their difference in temperature.

Open System: can
exchange matter
and energy with
surroundingsClosed System: can
exchange only energy
with surroundingIsolated System:
cannot exchange
energy or matter with
surrounding

Thermal Energy: sum of all the kinetic energies of all the particles of a sample of matter

Temperature: measure of the average kinetic energy of all the particles of a sample of matter

Exothermic Reactions

* Release thermal energy

 Heat (Q) flows from the system to the surroundings, usually causing an increase in the temperature of the surroundings

* Q has a negative value (Q < 0)

Endothermic Reactions

* Heat (Q) flows into the system from the surroundings, usually causing a decrease in the temperature of the surroundings.

* Calorimetry: experimental technique used to measure energy changes in chemical systems

* Different substances vary in their ability to absorb amounts of heat

Specific Heat Capacity

* Specific Heat Capacity: is the amount of energy required to raise the temperature of one gram of a substance one °C or one K

Subtance	Specific Heat Capacity (J/g° C at SATP)
Aluminum	0.897
Carbon	0.709
Hydrogen Gas	14.304
Air	1.01
Water (liquid)	4.19
Glass	0.84

Calculating Heat

* The amount of heat entering or exiting a system can be calculated using:

$$Q = m \cdot c \cdot \Delta T$$

A <u>positive</u> Q indicates heat gain A <u>negative</u> Q indicates heat lost

* Many water heaters use the combustion of natural gas (assume methane) to heat the water in the tank. When <u>150.0 L</u> of water at <u>10.0°C</u> is heated to <u>65.0°C</u>, how much heat flows into the water?

***** m = 150L x 1kg/L = 150 kg = 150 000 g

***** c = 4.18 J/g°C

* ΔT = (65°-10°) = 55°C

* Required:

***** = (150 000) x (4.18) x (55.0)

***** = 34 567 500 J OR 3.46 x 10⁷ J OR 3.46 x 10⁴ kJ

Therefore 3.46 x 104 kJ of heat flows into the water

* If <u>25.0 g</u> of <u>aluminum</u> cools from <u>310°C</u> to <u>37°C</u>, how many joules of heat energy are lost by the sample?

* m = 25.0 g

***** c = 0.897

* ΔT = 37 - 310 = -273 °C

* Required:

 $*Q = mc\Delta T$

* = (25.0) x (0.897) x (-273 °C)

* = -6122.025 J

* = -6.12 kJ

Therefore -6.12 kJ of heat is lost by the sample of aluminum

* The internal energy of a system is equal to the sum of the potential and kinetic energy of all species in the system

Kinetic Energy

moving electrons in atoms

vibration, rotation and translation of atoms and molecules

Potential Energy

 nuclear potential energy of protons and neutrons

bond energy

intra and intermolecular forces

It is not possible to measure all of these energies for a system

 Instead, we study the energy absorbed or released to the surroundings during a change in the system - the change in enthalpy, ΔH

Here \triangle H represents an exothermic reaction or release of energy

* Pop281 #2, 4-6; p291 #1, 5, 6, 10