Solving Problems with a Small Keq

* Some equilibrium expressions may require you to use the quadratic equation to solve

Using Quadratic Equation

* Reminder

$$
x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
$$

Example

* If initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.50 M, what are the equilibrium concentrations if Keq is 0.0059 ?
* $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{2(g)}$

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

Initial	0.50	0
Change	$-x$	$+2 x$
Equilibrium	$0.50-x$	$+2 x$

Solution

* Now use the Keq expression to solve

$$
\begin{aligned}
& K_{\text {eq }}=\frac{\left[\mathrm{HIT}^{2}\right.}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& 0.0059=\frac{(2 x)^{2}}{(0.5-x)}
\end{aligned}
$$

Since the equation doesn't involve a perfect square you must use the quadratic formula

Solution

* Rearrange into the quadratic equation

$$
\begin{aligned}
& 0.0059(0.5-x)=(2 x)^{2} \\
& 0.00295-0.0059 x=4 x^{2} \\
& -4 x^{2}-0.0059 x+0.00295=0 \\
& -1\left(4 x^{2}+0.0059 x-0.00295\right)=0
\end{aligned}
$$

This mean $a=4, b=0.0058, c=-0.00295$

Solution

* Now substitute into the quadratic equation:

$$
\begin{aligned}
& x=\frac{-0.0058 \pm V\left[(0.0058)^{2}-4(4)(-0.00295)\right]}{2(4)} \\
& x=0.026 \quad \text { OR } \quad x=-0.0029 \\
& \text { Since } x \text { can't be negative, } x=0.026
\end{aligned}
$$

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

Initial	0.50	0
Change	$-x$	$+2 x$
Equilibrium	$0.50-0.026$	$+2(0.026)$

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}
$$

Initial	0.50	0
Change	$-x$	$+2 x$
Equilibrium	0.474	0.052

Approximating Small Quantities

* When dealing with small concentration changes, you can sometimes assume that initial and final concentrations are the same.

Approximating Small Quantities

* When dealing with small concentration changes, you can sometimes assume that initial and final concentrations are the same.

> Example:
> $[1 i=0.065$

Change is []$=-0.000032$

$[1 e q=0.065-0.000032=0.0064968$

Approximating Small Quantities

* "hundred rule" is an assumption made to simplify problems
* If the ratio of Linitial concentration of reactant]/ $K>100$, than x is very small compared to initial concentration and may be discarded from some calculations.

Example

* In a reaction k is 4.2×10^{-8} in the equilibrium constant. A chemist puts 0.085 mol of nitrogen and 0.038 mol into a 1.5 L container. Determine the equilibrium concentration of NO.
* $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$

Solution

* First calculate the concentration of

 each product and reactant:$$
\begin{aligned}
& {\left[\mathrm{N}_{3}\right]=\frac{n}{V}=\frac{0.085 \mathrm{~mol}}{1.5 \mathrm{~L}}=0.057 \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{O}_{2}\right]=n^{n}=0.038 \mathrm{~mol}=0.025 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Solution

* Set up an ICE table and record information

$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$

Initial	0.057	0.025	0
Change	$-x$	$-x$	$+2 x$
Equilibrium	$0.057-x$	$0.025-x$	$2 x$

Solution

$$
\begin{aligned}
& \text { * Check to see if "hundred rule applies" } \\
& \text { * }[1 / / K>100 \\
& * 0.57 /\left(4.2 \times 10^{-8}\right)=>100
\end{aligned}
$$

This means you can assume the concentrations will remain approximately the same

Solution

* Now substitute and solve

$$
K_{\text {eq }}=\frac{\left[\mathrm{NO}^{2}\right]^{2}}{\left.\left[\mathrm{~N}_{2}\right] \mathrm{IO}_{2}\right]}
$$

$$
\begin{aligned}
& 4.2 \times 10-8=\frac{(2 x)^{2}}{(0.057)(0.025)} \\
& 4 x^{2}=5.985 \times 10^{-11} \\
& x=3.9 \times 10^{-6}
\end{aligned}
$$

Solution

* Set up an ICE table and record information

$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$

Initial	0.057	0.025	0
Change	$-x$	$-x$	$+2 x$
Equilibrium	$0.057-x$	$0.025-x$	$2\left(3.9 \times 10^{-6}\right)$

Solution

* Set up an ICE table and record information

$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$

Initial	0.057	0.025	0
Change	$-x$	$-x$	$+2 x$
Equillbrium	$0.057-x$	$0.025-x$	7.8×10^{-6}

Homework

* p 457 \# 71,72

