Solving Problems with a Small Keq

* Some equilibrium expressions may require you to use the quadratic equation to solve

Using Quadratic Equation

* Reminder

$$x = -b \pm \sqrt{(b^2 - 4ac)}$$

$$2a$$

Example

* If initial concentration of N₂O₄ is 0.50 M, what are the equilibrium concentrations if Keq is 0.0059?

* $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$

* Fill out an ICE table. Write a chemical equation and add know values.

$$N_2O_{4(g)} \Rightarrow 2NO_{2(g)}$$

Initial	0.50	0
Change	-X	+2x
Equilibrium	0.50 - x	+2x

* Now use the Keq expression to solve

$$K_{eq} = \frac{[H1]^2}{[H_2][I_2]}$$
 $0.0059 = \frac{(2x)^2}{(0.5 - x)}$

Since the equation doesn't involve a perfect square you must use the quadratic formula

* Rearrange into the quadratic equation

```
0.0059 (0.5 - x) = (2x)^2

0.00295 - 0.0059x = 4x^2

-4x^2 - 0.0059x + 0.00295 = 0

-1(4x^2 + 0.0059x - 0.00295) = 0
```

This mean a = 4, b = 0.0058, c = -0.00295

* Now substitute into the quadratic equation:

$$X = -0.0058 \pm \sqrt{[(0.0058)^2 - 4(4)(-0.00295)]}$$
2(4)

x = 0.026

OR

x = -0.0029

Since x can't be negative, x = 0.026

* Fill out an ICE table. Write a chemical equation and add know values.

 $N_2O_{4(g)} \Rightarrow 2NO_{2(g)}$

Initial	0.50	0
Change	-X	+2x
Equilibrium	0.50 - 0.026	+2 (0.026)

* Fill out an ICE table. Write a chemical equation and add know values.

 $N_2O_{4(g)} \Rightarrow 2NO_{2(g)}$

Initial	0.50	0
Change	-X	+2x
Equilibrium	0.474	0.052

Approximating Small Quantities

* When dealing with small concentration changes, you can sometimes assume that initial and final concentrations are the same.

Approximating Small Quantities

* When dealing with small concentration changes, you can sometimes assume that initial and final concentrations are the same.

Example: $\Box i = 0.065$ Change is $\Box 1 = -0.000032$

[]eq= 0.065 - 0.000032 = 0.0064968

Approximating Small Quantities

- * "hundred rule" is an assumption made to simplify problems
- * If the ratio of Linitial concentration of reactant 1/K > 100, than x is very small compared to initial concentration and may be discarded from some calculations.

Example

* In a reaction k is 4.2 x 10⁻⁸ in the equilibrium constant. A chemist puts 0.085 mol of nitrogen and 0.038 mol into a 1.5 L container. Determine the equilibrium concentration of NO.

* $N_{2(g)} + O_{2(g)} = 2NO_{(g)}$

* First calculate the concentration of each product and reactant:

$$[N_3] = n = 0.085 \text{ mol} = 0.057 \text{ mol/L}$$
 $V = 1.5L$
 $[0_2] = n = 0.038 \text{ mol} = 0.025 \text{ mol/L}$
 $V = 0.038 \text{ mol} = 0.025 \text{ mol/L}$

 $0_{2(a)} \Rightarrow 2N0_{(a)}$

* Set up an ICE table and record information

Nala

	14Z(g)	OZ(g)	2140(g)
Initial	0.057	0.025	0
Change	-X	-X	+2x
Equilibrium	0.057-x	0.025 - x	2x

- * Check to see if "hundred rule applies"
- * []i/K>100
- $* 0.57/(4.2 \times 10^{-8}) = >100$

This means you can assume the concentrations will remain approximately the same

* Now substitute and solve

$$K_{eq} = \frac{[N0]^2}{[N_2][0_2]}$$

$$4.2 \times 10^{-8} = \frac{(2x)^2}{(0.057)(0.025)}$$

$$4x^2 = 5.985 \times 10^{-11}$$

$$x = 3.9 \times 10^{-6}$$

 $0_{2(a)} = 2N0_{(a)}$

* Set up an ICE table and record information

Nam

	142(g)	O Z(g)	Z140(g)
Initial	0.057	0.025	0
Change	-X	-X	+2x
Equilibrium	0.057-x	0.025 - x	2(3.9 x 10 ⁻⁶)

 Ω_{α} , \rightarrow $2N\Omega_{\alpha}$

* Set up an ICE table and record information

	142(g)	U2(g)	Z14U(g)
Initial	0.057	0.025	0
Change	-X	-X	+2x
Equilibrium	0.057-x	0.025 - x	7.8 x 10 ⁻⁶

Homework

* p 457 #71, 72