Solutions Review

J. KROPAC

Ways to Represent Concentration

* Molar Concentration or 'Molarity'

* The number of moles of solute per liter of solution
where:
n is the number of moles (mol)
V is the volume in litres (L)

C is the concentration or molarity in mol/L

Example from homework

* A sodium hydroxide solution contains 0.186 g of NaOH in 250 mL of solution. Calculate the molar concentration of sodium hydroxide solution.

Example from homework

* Given
* $m=0.186 \mathrm{~g}$ of NaOH
* $V=250 \mathrm{~mL}$
* $C=$?

Example from homework

* Given
* $m=0.186 \mathrm{~g}$ of NaOH
* $V=250 \mathrm{~mL}=0.250 \mathrm{~L}$
* $C=$?

Step 1: Calculate Number of Moles of NaOH

Given:

$\mathrm{MNaOH}^{2}=0.186 \mathrm{~g}$
$\mathrm{MNaOH}=40.00 \mathrm{~g} / \mathrm{mol}$

Step 1: Calculate Number of Moles of NaOH

Given:
$\mathrm{MNaOH}=0.186 \mathrm{~g}$
$\mathrm{MNaOH}^{2}=40.00 \mathrm{~g} / \mathrm{mol}$

Formula:
$n=\frac{m}{M}$

Step 1: Calculate Number of Moles of NaOH

Given:

$\mathrm{MNaOH}^{2}=0.186 \mathrm{~g}$
$\mathrm{MNaOH}^{\mathrm{NaO}}=40.00 \mathrm{~g} / \mathrm{mol}$

Formula:

Solution:

$$
\text { nNaOH }=\frac{0.186 \mathrm{~g}}{40.00 \mathrm{~g} / \mathrm{mol}}
$$

$n_{\mathrm{NaOH}}=0.0047 \mathrm{~mol}$

Step 1: Calculate Number of Moles of NaOH

Given:

$\mathrm{MNaOH}=0.186 \mathrm{~g}$
$\mathrm{MNaOH}^{\mathrm{NaO}}=40.00 \mathrm{~g} / \mathrm{mol}$
nNaOH $=\frac{0.186 \mathrm{~g}}{40.00 \mathrm{~g} / \mathrm{mol}}$

Solution:

Formula:

$$
n=\frac{m}{M}
$$

Therefore there are 0.0047 mol of NaOH .
$n_{\mathrm{NaOH}}=0.0047 \mathrm{~mol}$

Step 2: Solve for C

* Given

$$
\begin{aligned}
& * n=0.0047 \mathrm{~mol} \\
& * V=0.250 \mathrm{~L} \\
& * C=?
\end{aligned}
$$

Step 2: Solve for C

$$
\begin{aligned}
& C=\frac{n}{V} \\
& C=0.0046 \mathrm{~mol} \\
& 0.250 \mathrm{~L} \\
& C=0.0184 \mathrm{M}
\end{aligned}
$$

Therefore the concentration of NaOH is 0.0184 M .

Solutions Stoichiometry

Example

* If 8.5 g of pure ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s})$, is dissolved in distilled water to make 400 mL of solution. what are the concentrationslin moles per litre) of the ions in solution?

Step 1: Chemical Formula

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(s)}+\mathrm{H}_{2} \mathrm{O}\left(() \rightarrow \mathrm{NH}_{4}^{+}(\right.$lq) $)+\mathrm{PO}_{4}{ }^{3-}($ laq $)+\mathrm{H}_{2} \mathrm{O}_{(1)}$

Step 1: Chemical Formula

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}($ aq $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Step 2: Net Ionic Equation

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 3 \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{ll})$
 $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})} \rightarrow 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}$ (aq)

Step 3: Stoichiometry

$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})} \rightarrow 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$
$m=8.5 \mathrm{~g}$
$M=149.12 \mathrm{~g} / \mathrm{mol}$

Step 3: Stoichiometry

$$
\begin{aligned}
& \quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s}) \rightarrow 3 \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-} \text {-(q) } \\
& \mathrm{m}=8.5 \mathrm{~g} \\
& \mathrm{M}=149.12 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Convert mass to moles

$$
n=\frac{m}{M}
$$

$$
n=\frac{8.5 \mathrm{~g}}{149.12 \mathrm{~g} / \mathrm{mol}}
$$

Therefore there are 0.057 moles of ammonium phosphate.

$$
n=0.057 \mathrm{~mol}
$$

Step 3: Stoichiometry

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s}) \rightarrow 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \\
& m=8.5 \mathrm{~g} \\
& \mathrm{M}=149.12 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Molar Ratio

For $\mathrm{PO}_{4}{ }^{3-}$

Step 3: Stoichiometry

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})} \rightarrow 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq}) \\
& m=8.5 \mathrm{~g} \\
& \mathrm{M}=149.12 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Molar Ratio

For $\mathrm{NH}_{4}{ }^{*}$
$\frac{1}{3}=\frac{0.057 \mathrm{~mol}}{\text { nNH4 }}$
$n_{N H 4}=0.171 \mathrm{~mol}$

$\frac{1}{1}=\underset{n p 04}{0.057 \mathrm{~mol}}$
np04 $=0.057 \mathrm{~mol}$

Step 3: Stoichiometry

Therefore there are 0.171 moles of NH_{4}^{+}ions and 0.057 moles of $\mathrm{PO}_{4}{ }^{3-}$ ions.

Step 4: Calculate Concentrations

For PO_{4}^{3-}

For $\mathrm{NH}_{4}{ }^{+}$
$C=\frac{n}{V}$
$C=\frac{0.057 \mathrm{~mol}}{0.400 \mathrm{~L}}$
$C=0.143 \mathrm{M}$
$\mathrm{C}=0.428 \mathrm{M}$
Given: $\boldsymbol{u n h 4}=0.171 \mathrm{~mol}$ $V=0.400 \mathrm{~L}$
$C=\frac{n}{V}$
$C=0.171 \mathrm{~mol}$ 0.400 L

Given: npos $=0.057 \mathrm{~mol}$ $V=0.400 \mathrm{~L}$

Solution

* Therefore, in the 400 mL solution, there is a 0.4 M concentration of NH_{4}^{+}ions and a 0.1 M concentration of PO_{4}^{3-} ions.

