Solubility Product Constant

Solubility Constant

* Solubility equilibria: Reactions involving the dissolving or forming of a solid from solution

* Overall equation:

* $AgNO_{3(aq)}$ + $HCl_{(aq)} \rightarrow AgCl_{(s)}$ + $HNO_{3(aq)}$

* Net ionic equation:

* $Ag^{+}(aq)$ + $CI^{-}(aq) \rightarrow AgCl(s)$

Solubility Constant

- * For a partly soluble or insoluble solid such as AgCl,
 - * $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$
 - * we define K_{sp}, the solubility product constant:

$$K_{sp} = [Ag^{+}][C]^{-}]$$

* Fe(OH)_{3(s)} \implies Fe³⁺(aq) + 3OH⁻(aq)

* $Ag_2S(s) \Rightarrow 2Ag^{\dagger}(aq) + S^{2-}(aq)$

* $Ca_3(PO_4)_{2(s)} = 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$

* Fe(OH)_{3(s)} \Rightarrow Fe³⁺(aq) + 3OH⁻(aq)

***** $K_{sp} = [Fe^{3+}][OH^{-}]^{3}$

* $Ag_2S(s) \rightleftharpoons 2Ag^{\dagger}(aq) + S^{2-}(aq)$

***** $K_{sp} = [Ag^+]^2[S^2-]$

* $Ca_3(PO_4)_{2(s)} = 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$

***** $K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]^2$

*
$$Pbl_{2(s)} \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)$$

* Determine Concentrations

$[Pb] = 1.3 \times 10^{-3} M$

$\begin{aligned} \text{[I]} &= 2[\text{Pb}] = 2 \times [\text{Pb}] = 1.3 \times 10^{-3} \text{ M} \\ &= 2.6 \times 10^{-3} \text{ M} \end{aligned}$

* Substitute into K_{sp}

$K_{sp} = [Pb^{2+}][I-]^2$ $K_{sp} = (1.3 \times 10^{-3})(2.6 \times 10^{-3})^2$ $K_{sp} = 8.8 \times 10^{-9}$

Solubility and the Common lon Effect

Common ion effect: a decrease in solubility which occurs when an ionic compound is dissolved in a solution that contains an ion in common with the solid

* Consistent with principle of Le Chatelier

Common Ion Effect

* What is the solubility of BaSO₄ in a solution of 0.250 M Na₂SO₄? The K_{sp} of BaSO₄ is 8.7 x 10⁻¹¹.

* Solve for x

$K_{sp} = [Ba^{2+}][SO_4^{2-}]$

$K_{sp} = x (0.250 + x)$

8.7 x 10⁻¹¹ = x (0.250 + x)

8.7 x $10^{-11} = x (0.250)$ (hundred's rule)

$x = 3.5 \times 10^{-10}$

* Calculate the solubility for the same solute in water with no added SO4²⁻(aq).

Common Ion Effect

* Calculate the solubility for the same solute in water with no added SO4²⁻(aq).

* Solve for x

$K_{sp} = [Ba^{2+}][SO_4^{2-}]$

8.7 x 10-11 = x²

 $x = 9.3 \times 10^{-6}$

* The solubility of BaSO4 is

* 9.3 x 10⁻⁶ M in water

* 3.5 x 10⁻¹⁰ M in 0.250 M SO₄²⁻

Formation of a Precipitate

- * Predict if a precipitate forms when two solutions are mixed
- Calculate Q and compare it to K_{sp} to determine if a precipitate will form when mixing solutions of soluble compounds

* 25.00 mL of 0.050 M Na₂CO₃ and 25.00 mL of 0.0020 M Ca(NO₃)₂ are mixed. Will a precipitate form?

Solution

* $Na_2CO_{3(aq)}$ + $Ca(NO_3)_{2(aq)}$ = 2 $NaNO_{3(aq)}$ + $CaCO_{3(s)}$

* $CaCO_{3(s)} = Ca^{2+}(aq) + CO_{3}^{2-}(aq)$

Solution

* Na₂CO_{3(aq)} + Ca(NO₃)_{2(aq)} \Rightarrow 2 NaNO_{3(aq)} + CaCO_{3(s)}

* $CaCO_{3(s)} = Ca^{2+}(aq) + CO_{3}^{2-}(aq)$

Find number of moles present that were added to the system

nca = CV nca = (0.0020 M)(0.02500 L) nca = 5.0 x 10⁻⁵ mol

nco3 = (0.050 M)(0.02500 L) nco3 = 1.25 x 10⁻³ mol

* Now find the concentration of each ion present.

 $C_{Ca} = n/V$ $C_{Ca} = (5.0 \times 10^{-5})/(0.05000)$ $C_{Ca} = 1.0 \times 10^{-3} M$

 $C_{CO3} = (1.25 \times 10^{-3})/(0.05000)$ $C_{CO3} = 0.025$ M

- * Now find Q
 Q = [Ca²⁺][CO₃²⁻]
- $Q = (1.0 \times 10^{-3})(0.025)$
- $Q = 2.5 \times 10^{-5}$

Find K_{sp} from chart K_{sp}= 5.0 x 10⁻⁹

* Now find Q

 $Q = [Ca^{2+}][CO_3^{2-}]$

 $Q = (1.0 \times 10^{-3})(0.025)$

 $Q = 2.5 \times 10^{-5}$

 $2.5 \times 10^{-5} > 5.0 \times 10^{-9}$ Q>K_{sp}

Therefore a precipitate WILL form

