Snowflake Problem

## Sample Problem

* Determine how many molecules are in the average snowflake.
* Given: It has been determined that the average snowflake weighs 1 mg
* *HINT, careful with your units here!!



## Solution

* Convert from mass to moles
* Mass $=0.001 \mathrm{~g}$
* $M_{\text {water }}=2(H)+0=2(1.01)+16=18.02 \mathrm{~g} / \mathrm{mol}$


## Solution

* Convert from mass to moles
* Mass $=0.001 \mathrm{~g}$
* $M_{\text {water }}=2(H)+0=2(1.01)+16=18.02 \mathrm{~g} / \mathrm{mol}$

$n=m / M$<br>$n=0.001 / 18.02$<br>$n=0.000055 \mathrm{~mol}$

## Solution

* Convert from mass to moles
* Mass $=0.001 \mathrm{~g}$
* $M_{\text {water }}=2(H)+0=2(1.01)+16=18.02 \mathrm{~g} / \mathrm{mol}$
$n=m / M$ $n=0.001 / 18.02$ $n=0.000055 \mathrm{~mol}$

Therefore there are 0.000055 mol in a snowflake

## Solution

* Convert from moles to particles
* $n=0.000055$
* $\mathrm{Na}=6.02 \times 10^{23}$


## Solution

* Convert from moles to particles
* $n=0.000055$
* $\mathrm{Na}=6.02 \times 10^{23}$

$$
\begin{aligned}
& N=n \times N a \\
& N=0.000055 \times 6.02 \times 1023 \\
& N=3.3 \times 10^{19}
\end{aligned}
$$

## Solution

* Convert from moles to particles
* $n=0.000055$
* $\mathrm{Na}=6.02 \times 10^{23}$
$N=n \times N a$
$N=0.000055 \times 6.02 \times$
$N=3.3 \times 10^{19}$

Therefore there are $3.3 \times 10^{19}$ atoms in a snowflake

