Single Displacement Reactions

- Single displacement reactions occur when one element replaces another similar element in a compound.
- In order to determine if a reaction is going to take place, you need to refer to an activity series.
- An activity series is a list of how reactive an element is, and is based off of that elements electronegativity.

Single Displacement Reactions Involving Metals

Most single displacement reactions involve a metal replacing another metal

Example: Copper reacts with silver nitrate

Example: Magnesium reacts with hydrochloric acid

*In this case, we treat hydrogen as a metal

Using the Activity series of metals

- An activity series is a list of substances ranked in order of relative reactivity, starting
 with the most reactive. It is derived experimentally by looking at reactivity with water
 and acids.
- A reactive metal will displace any metal in a compound that is below it on the series.

Example: Iron reacts with copper (II) sulfate

Example: Silver reacts with calcium chloride

Activity Series						
Metal lithium potassium strontium calcium sodium	Common lons Li ⁺¹ K ⁺¹ Sr ⁺² Ca ⁺² Na ⁺¹	Reactivity most reactive These metals displace hydrogen from water: Ca(s) + 2H ₂ O(I) → Ca(OH) ₂ + H ₂ (g) They react readily to form compounds.				
magnesium aluminum zinc chromium iron cadmium cobalt nickel tin lead	Mg ⁺² Al ⁺³ Zn ⁺² Cr ⁺² , Cr ⁺³ Fe ⁺² , Fe ⁺³ Cd ⁺² Co ⁺² , Co ⁺³ Ni ⁺² Sn ⁺² , Sn ⁺⁴ Pb ⁺² , Pb ⁺⁴	These metals displace hydrogen from acids: Zn(s) + HCl(aq) → ZnCl ₂ + H ₂ (g)				
antimony arsenic bismuth copper	Sb ⁺³ , Sb ⁺⁵ As ⁺³ , As ⁺⁵ Bi ⁺³ Cu ⁺¹ , Cu ⁺²	These metals do not displace hydrogen from acids.				
mercury silver platinum gold	Hg ⁺¹ , Hg ⁺² Ag ⁺¹ Pt ⁺² Au ⁺¹ , Au ⁺³	These metals are more stable, forming compounds less readily than those higher on the table.				

Single Displacement Reactions Involving Halogens

- Non-metals can also take place in single displacement reactions.
- The activity series for halogens directly mirrors their position on the periodic table with F>Cl>Br>I.

Example: Chlorine gas reacts withe potassium bromide

Example: lodine reacts with calcium bromide

Double Displacement Reactions

 A double displacement reaction involves the exchange of cations between two ionic compounds.

Precipitate Reactions

- A precipitate is a solid that separates from a solution in a chemical reaction.
- In order to predict whether a precipitation reaction will take place, you need to consult a solubility table.
- If a precipitate forms, that compound will be represented by a (s).
- If no precipitate forms, no reaction will take place.

Table 17.3 Solubilities of Ionic Compounds* aq = aqueous (dissolves in water); s = solid (does not dissolve in water)

	Acetate	Bromide	Carbonate	Chlorate	Chloride	Fluoride	Hydrogen Carbonate	Hydroxide	lodide	Nitrate	Nitrite	Phosphate	Sulfate	Sulfide	Sulfite
lons	A	В	၁	၁	0	ш	С	Ξ_	의 	z	2	4	S	S	s
Aluminum	S	aq		aq	aq	S		S	12 -4	aq		S	aq	: ————————————————————————————————————	
Ammonium	aq	aq	aq	aq	aq	aq	aq	1 —	aq	aq	aq	aq	aq	aq	aq
Barium	aq	aq	s	aq	aq	S		aq	aq	aq	aq	s	S	:	s
Calcium	aq	aq	S	aq	aq	S		s	aq	aq	aq	S	S	i — .	S
Cobalt(II)	aq	aq	s	aq	aq	-		S	aq	aq		S	aq	S	S
Copper(II)	aq	aq	S	aq	aq	aq		s		aq		S	aq	S	
Iron(II)	aq	aq	s		aq	S		s	aq	aq		S	aq	S	S
Iron(III)	_	aq			aq	S		s	aq	aq		S	aq) <u> </u>	
Lead(II)	aq	S	s	aq	s	S		s	S	aq	aq	S	S	S	S
Lithium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	s	aq	aq	aq
Magnesium	aq	aq	S	aq	aq	S		S	aq	aq	aq	S	aq	ş .———	aq
Nickel	aq	aq	s	aq	aq	aq		S	aq	aq		s	aq	S	S
Potassium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq
Silver	s	s	S	aq	S	aq			S	aq	S	s	S	S	s
Sodium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq
Zinc	aq	aq	s	aq	aq	aq		S	aq	aq		S	aq	S	S

Example: magnesium chloride reacts with calcium hydroxide
Example: barium chloride reacts with potassium sulfate
Example: magnesium chloride reacts with potassium sulfate
Gas Producing Reactions
A double displacement reaction will take place if the reaction produces a gas.
Example: sodium sulfide reacts with hydrochloric acid

Neutralization Reactions

• When an acid and base are mixed, water will be produced as a water and a salt.

Example: aqueous magnesium hydroxide reacts with aqueous hydrogen chloride