Acid Base Properties of Salt Solutions

pH of Salt Solutions

$\mathrm{NH}_{4} \mathrm{Cl}_{(\text {aq })} \rightarrow \mathrm{NH}_{4}^{+}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}($aq)

* Some dissolved anions and cations react with water. This affects the pH of the solution.
* The pH of a salt solution may be neutral. acidic or basic.

Example

$\mathrm{NH}_{4} \mathrm{CH}_{\text {(ay) }} \rightarrow \mathrm{NH}_{4}{ }^{*}{ }^{(a y)}+\mathrm{CH}_{-(a y)}$

* $\mathrm{Do} \mathrm{NH}_{4}^{+}$and Cl^{-}react with water?

* $\mathrm{Cl}_{-(\text {(a) })}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{Cl}^{-(\text {(q) })}+\mathrm{H}_{2} \mathrm{O}_{(1)} \quad \mathrm{NO}$ REACTION
* $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq)})+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftharpoons \mathrm{NH}_{3(\text { lq) })}+\mathrm{H}_{3} \mathrm{O}^{+}($aq)
* New products are formed! (NH_{3} and $\mathrm{H}_{3} \mathrm{O}^{+}$)

Hydrolysis

* The reaction of the cation or anion of a salt with water to produce a change in the pH of the solution is called hydrolysis.

Acidic Salt Solutions

* Occurs when a salt consisting of the anion of a strong acid and the cation of a weak base ionizes in water.
* $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}^{+}+\mathrm{Cl}^{-}$
$* \mathrm{NH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acidic Salt Solutions

* Charged metal ions will also produce hydronium ions in water
* $\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Be}^{2+}$

Basic Salt Solutions

* When a salt consisting of the anion of a weak acid and the cation of a strong base ionize in water, a base is created.
- $\mathrm{CH}_{3} \mathrm{COONa} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
* $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

Summary

Salt Solution	PII	Example
Neutral $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	7	None
Acidic $\mathrm{NH}_{4} \mathrm{Cl}$	<7	$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Acidic $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{FeCl}_{3}$	<7	$\begin{aligned} & \mathrm{AlH}_{2} \mathrm{O}_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{AlH}_{2} \mathrm{O}_{5} \mathrm{OH}_{2}+ \\ &+\mathrm{H}_{3} \mathrm{O}^{+} \end{aligned}$
Acidic/Basic $\mathrm{NH}_{4} \mathrm{ClO}_{2}, \mathrm{NH}_{4} \mathrm{CN}$	<7 Ka(cation) >Kb(anion) >7 Kb(anion)>Ka(cation)	$\begin{aligned} & \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCN}+\mathrm{OH}^{-} \end{aligned}$
Acidic/Basic $\mathrm{NaH}_{2} \mathrm{PO}_{4}$	<7 Ka(cation) >Kb(anion) >7 Kb(anion)>Ka(cation)	$\begin{aligned} & \mathrm{HSO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{3}{ }^{2}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \mathrm{HSO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}- \end{aligned}$

Buffer Solutions

Buffer Solutions

* Buffer: Resists the change to pH when limited amounts of an acid or a base are added

Buffer Solution

* Must contain a large amount of acid and base without reacting in a neutralization reaction.

Buffer Solution

* Consist of a mixture of weak acid and its conjugate base (supplied by a salt) or a weak base and it's conjugate acid (supplied by a salt).

Example

* A buffer solution where both $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are high
* When and acid is added
$* \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$
* When a base is added
$* \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$

