

* Electrical Resistance is the opposition of the movement of electrons as they flow through a circuit

* Measured in Ohms A

Wednesday, April 16, 2014

Factors that Affect Resistance

- * Factors that affect resistance
 - * i) Type of material: if the material is a good conductor, resistance is low as electrons can travel easily
 - * ii) Cross-Sectional area: The greater the cross sectionals area, the lower the resistance

Factors that Affect Resistance

- * Factors that affect resistance
 - * iii)Length: The longer the wire the higher the resistance value
 - * iv) Temperature: The cooler the substance, the lower the resistance
 - * As a substance warms, the particles vibrate faster and there is more things for the electrons to run into

Measuring Resistance

- * Resistance is measured using an ohmmeter
- * The ohmmeter is connected in parallel with the load
- * Ohmmeters are represented by the following symbol

Ohn's Law

* Current (I) is measured in amperes (A)

- * Voltage (V) is measured in volts

* Resistance (R) is measured in ohms (N)

* Ohm's law states that as the potential difference across a load increases, so does the current

Sample Calculation

* A 110 Λ resistor is connected to a power supply set at 1.2 V. Calculate the current going through the resistor.

Sample Calculation

Wednesday, April 16, 2014

Sample Calculation

* I = 1.2 V/ 110 A

* I = 0.01 A

* Therefore, the current through the resistor is 0.01 A.

Wednesday, April 16, 2014