

* Total Ionic Equation:

$$Zn(s) + Cu^{2+}(aq) + SO_4^{2-}(aq) \rightarrow Zn^{2+}(aq) + SO_4^{2-}(aq) + Cu(s)$$

- * Net Ionic Equation:
- * $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Pefinitions

- * Reduction: a process in which chemical entities gain electrons.
 - * In the above reaction, Cu²⁺ becomes Cu, a gain of 2 e⁻ (a reduction)

Pefinitions

- * Oxidation: a process in which chemical entities lose electrons.
- * In the above reaction, Zn becomes Zn²⁺, a loss of 2 e⁻ (an oxidation)

LEO the Lion says GER

LEO the Lion says GER

*
$$Ca(s) + Sn^{2+}(aq) \rightarrow Ca^{2+}(aq) + Sn(s)$$

*
$$Ca_{(s)} + Sn^{2+}_{(aq)} \rightarrow Ca^{2+}_{(aq)} + Sn_{(s)}$$

* $Ca_{(s)} \rightarrow Ca^{2+}_{(aq)} + 2e^{-}$ (OXIDATION)

* $Sn^{2+}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)}$ (REDUCTION)

*
$$4 \text{ Al(s)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ Al}_{2}\text{ O}_{3(s)}$$

*
$$4 \text{ Al} \rightarrow 4 \text{ Al}^{3+} + 12 \text{ e}^{-}$$
 (OXIDATION)

Al \rightarrow Al³⁺ + 3 e⁻

* $3 \text{ O}_2 + 12 \text{ e}^{-} \rightarrow 6 \text{ O}^{2-}$ (REDUCTION)

* $0_2 + 4 \text{ e}^{-} \rightarrow 2 \text{ O}^{2-}$

Covalent Compounds

- * $CH_{4(g)} + 20_{2(g)} \rightarrow CO_{2(g)} + 2H_{2}O_{(||)}$
- * To identify where electrons are being transferred, oxidation numbers are assigned to each atom and ion in a reaction.
- * You can think of these like "apparent" charges

Rules for Assigning Oxidation Numbers

- * 1) The OX# of an atoms in an uncombined element is always 0.
 - * Ex. P in P4 has an OX# of O
- * 2) The OX# of a simple ion is the charge of the ion.
 - * Ex. Ca²⁺ has an OX# of +2

Rules for Assigning Oxidation Numbers

- * 3) The OX# of hydrogen is +1 (except in metal hydrides).
 - * Ex. NaH Na has 0X# of +1, H has 0X# of -1
- * 4) The OX# of oxygen is -2 (except in peroxides).
 - * Ex. H₂O₂ H has OX# of +1, O has OX# of -1

Rules for Assigning Oxidation Numbers

- * 5) The OX# of Group I element ions is +1. The OX# of Group II element ions is +2.
- * 6) The sum of 0X#s in a compound must equal 0.
- * 7) The sum of OX#s in a polyatomic ion must equal the charge of the ion.

* NH3

ON of N =

* CaCl2

ON of Ca =

* MoS₂

ON of Mo =

* Na₂S₂O₃

ON of S =

* CIO-

ON of CI =

* H₃PO₄

ON of P =

* Mn041-

ON of Mn =

* NH₃ ON of N = -3

* CaCl₂ ON of Ca = +2

* MoS₂ ON of Mo = +4

* Na₂S₂O₃ ON of S = +2

* H₃PO₄ ON of P = +5

* $Mn04^{1}$ ON of Mn = +7

 $* Cr_2O_7^2 ON of Cr =$

* C3H8 ON of C =

* C3H6O ON of C =

* Cr(NO3)3 ON of Cr =

* H₂O₂ ON of O =

* (NH4)2CO3 ON of C =

* Cr2072-* C3H8

$$ON of C = -8/3$$

ON of
$$C = -4/3$$

$$* H2O2 ON of O = -1$$

*
$$(NH_4)_2CO_3$$
 ON of $C = +4$

* 2KI + Pb(NO₃)₂ -> Pbl₂ + 2KNO₃

*
$$2KI + Pb(NO_3)_2 \rightarrow Pbl_2 + 2KNO_3$$

+1 -1 +2 +5 -2 +2 -1 +1 +5 -2

*
$$2KI + Pb(NO_3)_2 \rightarrow Pbl_2 + 2KNO_3$$

+1 -1 +2 +5 -2 +2 -1 +1 +5 -2

No change in oxidation numbers, therefore not a redox reaction.

* 4NH3 + 702 -> 4NO2 + 6H20

*
$$4NH_3 + 70_2 \rightarrow 4N0_2 + 6H_20$$

*
$$4NH_3 + 70_2 \rightarrow 4N0_2 + 6H_20$$

N is being oxidized (-3 to +4) and 0 is being reduced (0 to -2), therefore this IS REPOX

Homework

- * p. 586 #4-6
- * p. 588 #7,8
- * p. 589 #1,3,5,6,8