Redox Reactions

* Total Ionic Equation:

$\mathrm{Zn}(\mathrm{sl})+\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2}\left(\right.$ (aq) $\rightarrow \mathrm{Zn}^{2+}($ laq $)+\mathrm{SO}_{4}{ }^{2}-($ aqu $)+\mathrm{CU}_{(s)}$

* Net lonic Equation:
$* \mathrm{Zn}_{(\mathrm{s})}+\mathrm{Cu}^{2+}{ }_{\text {(aq) }} \rightarrow \mathrm{Zn}^{2+}{ }_{\text {laq) }}+\mathrm{CU}_{(s)}$

Definitions

* Reduction: a process in which chemical entities gain electrons.
* In the above reaction, Cu^{2+} becomes Cu . a gain of $2 e^{-}$(a reduction)

Definitions

* Oxidation: a process in which chemical entities lose electrons.
* In the above reaction, Zn becomes Zn^{2+}, a loss of $2 e^{-}$(an oxidation)

LEO the Lion says GER

LEO the Lion says GER

Example

* $\mathrm{Ca}(\mathrm{s})+\mathrm{Sn}^{2+}(\mathrm{laq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{Sn}_{(s)}$

Example

* $\mathrm{Ca}(\mathrm{s})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s})$

$$
\begin{aligned}
& * \mathrm{Ca}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2^{+}}(\mathrm{aq})+2 e^{-} \quad \text { (OXIDATION) } \\
& * \mathrm{Sn}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Sn}(\mathrm{~s}) \\
& \text { (REDUCTION) }
\end{aligned}
$$

Example

* $4 \mathrm{Als}_{(s)}+3 \mathrm{O}_{2(0)} \rightarrow 2 \mathrm{Al}_{2} 0_{3(s)}$

Example

$$
\begin{array}{rl}
* & 4 \mathrm{Al} \rightarrow 4 \mathrm{Al}^{3+}+12 e^{-} \\
& \mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}^{-} \\
* & 3 \mathrm{O}_{2}+12 \mathrm{e}^{-} \rightarrow 6 \mathrm{O}^{2-} \text { (REDUCTION) } \\
* & \mathrm{O}_{2}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}
\end{array}
$$

Covalent Compounds

$* \mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(1)}$

* To identify where electrons are being transferred, oxidation numbers are assigned to each atom and ion in a reaction.
* You can think of these like "apparent" charges

Rules for Assigning Oxidation Numbers

* 1) The OX\# of an atoms in an uncombined element is always 0 .
* Ex. P in P_{4} has an OX\# of 0
* 2) The $0 X$ \# of a simple ion is the charge of the ion.
* Ex. Ca^{2+} has an $0 \times$ \# of +2

Rules for Assigning Oxidation Numbers

* 3) The $0 X$ \# of hydrogen is +1 lexcept in metal hydrides).
* Ex. NaH - Na has OX\# of +1 , H has OX\# of -1
* 4) The $0 X$ \# of oxygen is -2 lexcept in peroxides).
* Ex. $\mathrm{H}_{2} \mathrm{O}_{2}$ - H has $\mathrm{OX} \#$ of $+1,0$ has $\mathrm{OX} \#$ of -1

Rules for Assigning Oxidation Numbers

* 5) The OX\# of Group I element ions is +1 . The OX\# of Group II element ions is +2 .
* 6) The sum of OX\#s in a compound must equal 0.
* 7) The sum of OX\#\# in a polyatomic ion must equal the charge of the ion.

Example

* NH_{3}
 ON of $\mathrm{N}=$

* CaCl2

ON of Ca =

* MoS2 ON of Mo =
* $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ON of $\mathrm{S}=$
* ClO^{-}

ON of $\mathrm{Cl}=$

* $\mathrm{H}_{3} \mathrm{PO}_{4}$

ON of $\mathrm{P}=$

* $\mathrm{MnO}_{4}{ }^{-1}$ ON of $\mathrm{Mn}=$

Example

* $\mathrm{NH}_{3} \quad \mathrm{ON}$ of $\mathrm{N}=-3$
* $\mathrm{CaCl}_{2} \quad \mathrm{ON}$ of $\mathrm{Ca}=+2$
* Mos2
$O N$ of $\mathrm{M}_{0}=+4$
* $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ON of $\mathrm{S}=+2$
- $\mathrm{H}_{3} \mathrm{PO}_{4}$

ON of $P=+5$

* $\mathrm{MnO}_{4}{ }^{1-}$

ON of $\mathrm{Mn}=+7$

Examples

* $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2} \quad \mathrm{ON}$ of $\mathrm{Cr}=$
* $\mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{ON}$ of $\mathrm{C}=$
* $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ ON of C =
* $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{ON}$ of $\mathrm{Cr}=$
* $\mathrm{H}_{2} \mathrm{O}_{2} \quad \mathrm{ON}$ of $0=$
* $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \mathrm{ON}$ of $\mathrm{C}=$

Examples

* $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2} \quad \mathrm{ON}$ of $\mathrm{Cr}=+6$
* $\mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{ON}$ of $\mathrm{C}=-8 / 3$
* $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \quad \mathrm{ON}$ of $\mathrm{C}=-4 / 3$
* $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \quad \mathrm{ON}$ of $\mathrm{Cr}=+3$
* $\mathrm{H}_{2} \mathrm{O}_{2} \quad \mathrm{ON}$ of $\mathrm{O}=-1$
* $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \mathrm{ON}$ of $\mathrm{C}=+4$

Is this a redox reaction?

* $2 \mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{KNO}_{3}$

Is this a redox reaction?

Is this a redox reaction?

$$
* \underset{+1-1}{2 \mathrm{KI}}+\underset{+2+5-2}{\mathrm{~Pb}}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \underset{+2-1}{\mathrm{PbI}_{2}}+\underset{+1+5-2}{2 \mathrm{KNO}_{3}}
$$

No change in oxidation numbers, therefore not a redox reaction.

Is this a redox reaction?

- $4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Is this a redox reaction?

$* 4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
 $\begin{array}{llll}-3+1 & 0 & +4-2 & +1\end{array}$

Is this a redox reaction?

$$
* \underset{-3+1}{4 \mathrm{NH}_{3}}+\underset{0}{7 \mathrm{O}_{2}} \rightarrow \underset{+4-2}{4 \mathrm{NO}_{2}}+\underset{+1-2}{6 \mathrm{H}_{2} \mathrm{O}}
$$

N is being oxidized $(-3$ to +4$)$ and 0 is being reduced (0 to -2$)$, therefore this IS REDOX

Homework

$$
\begin{aligned}
& * p .586 \# 4-6 \\
& * p .588 \# 7,8 \\
& * p .589 \# 1,3,5,6,8
\end{aligned}
$$

