

### First Order Reactions





## Quantitative Effects of Factors

\* The mathematical relationship between the reaction rate and the factors that affect it is called the RATE LAW.

\* The rate law may not be predicted theoretically. It must be determined experimentally.

# Quantitative Effects of Factors

To determine experimentally, the concentration of on reactant is changed while the other remains the same.

\* The rate of chemical reaction is then measured and recorded.

### Rate Laws

\* The rate law is proportional to the product of the initial concentrations of the reactants to some exponential values

rate = k [A]m [B] n

A and B are reactants m = order of the reaction with respect to A n = order of the reaction with respect to B k = rate constant

m+n is the overall order of the reaction

## How to Vetermine Order

#### First Order

### Second Order

If m = 1, the rxn is 1<sup>st</sup> order wrt reactant A

When [A] is doubled, rate doubles

When [A] is tripled, the rate triples If m =2, the rxn is 2<sup>nd</sup> order wrt reactant A

When [A] is doubled, rate quadruples

When [A] is tripled, the rate is nine times faster

## How to Vetermine Rate Constant

The rate constant can be determined from any experimental data using the following equation:







\* Rate = k [A]<sup>1</sup>[B]<sup>2</sup>[C]<sup>0</sup>



#### \* Rate = k [A]<sup>1</sup>[B]<sup>2</sup>[C]<sup>0</sup>

- \* What happens if the concentration of A is doubled?
- \* What happens if the concentration of B is tripled?
- \* What happens if the concentration of C is multiplied by four?



#### \* Rate = k [A]1[B]2[C]0

- \* What happens if the concentration of A is doubled? Rate doubles
- \* What happens if the concentration of B is tripled? Rate multiplied by nine
- \* What happens if the concentration of C is multiplied by four? Rate stays the same



\* The following reaction is studied experimentally

\*  $2NO_{(g)}$  +  $2H_{2(g)} \rightarrow Ns(g)$  +  $2H_2O_{(g)}$ 

 Pata reveals that doubling nitrogen monoxide results in a fourfold increase, where doubling hydrogen only doubles reaction rates.

\* The data from a concentration time graph shows the slow of the tangent is 0.25 M/s, [N0]=0.1M and [H<sub>2</sub>]= 0.04 M.



#### \* First we can determine order:





#### \* Now substitute in graph data

#### \* rate= k $[NO]^2[H_2]$ where Rate = 0.25 [NO] = 0.1 M $[H_2] = 0.04 M$



\* Now substitute in graph data

\* rate= k  $[NO]^2[H_2]$  where Rate = 0.25 [NO] = 0.1 M $0.25 = k [0.1]^2[0.04]$   $[H_2] = 0.04 M$ 

 $k = (0.25) / [(0.1)^2 (0.04)]$   $k = (0.25) / [(0.1)^2 (0.04)]$  $k = 625 M^{-2} / sec$ 



\* Now substitute in graph data

\* rate= k [N0]<sup>2</sup>[H<sub>2</sub>] where Rate = 0.25 0.25 = k [0.1]<sup>2</sup>[0.04] k=  $(0.25)/[(0.1)^{2}(0.04)]$ k= 625 M<sup>-2</sup>/sec Rate = 0.25

So our full rate equation would be rate=625[N0]<sup>2</sup>[H2]

# Challenge Yourself!

 Chlorine dioxide reacts with hydroxide ions to produce a mixture of chlorate and chlorite ions.

 $2ClO_{2(aq)} + 2OH_{(aq)} \rightarrow ClO_{3}(aq) + ClO_{2}(aq) + H_{2}O(1)$ 

| Experiment | [C 02]         | COH1           | Rate                    |
|------------|----------------|----------------|-------------------------|
| 1          | 0.015          | 0.025          | 1.30 x 10 <sup>-3</sup> |
| 2          | 0.015          | 0.05           | 2.60 x 10 <sup>-3</sup> |
| 3          | 0.045          | 0.025          | 1.16 x 10-2             |
| 1          | eo this inform | nation to find |                         |

### rate = $k [ClO_3]^m [OH]^n$

#### rate = $k [C|0_3]^m [OH]^n$

#### Determine m

 $\frac{r_3 = k [C|0_3]^m [OH]^n}{r_1 = k [C|0_3]^m [OH]^n}$ 

 $\frac{1.6 \times 10^{-2} = k(0.0450)m (0.0250)m}{1.3 \times 10^{-3} = k(0.0150)m (0.0250)m}$ 

#### rate = $k [C|0_3]^m [OH]^n$

#### Determine m

- $\frac{r_3 = k [C|O_3]^m [OH]^n}{r_1 = k [C|O_3]^m [OH]^n}$
- $\frac{1.6 \times 10^{-2} = k(0.0450)^{m} (0.0250)^{n}}{1.3 \times 10^{-3} = k(0.0150)^{m} (0.0250)^{n}}$ 
  - 9=(3)m m=2

#### rate = $k [ClO_3]^m [OH]^n$

#### Determine m

### Determine n

 $\frac{\mathbf{r}_3 = \mathbf{k} [C|O_3]^m [OH]^n}{\mathbf{r}_1 = \mathbf{k} [C|O_3]^m [OH]^n}$ 

 $\frac{\mathbf{r}_2 = \mathbf{k} [C|O_3]^m [OH]^n}{\mathbf{r}_2 = \mathbf{k} [C|O_3]^m [OH]^n}$ 

 $\frac{1.6 \times 10^{-2} = k(0.0450)m (0.0250)n}{1.3 \times 10^{-3} = k(0.0150)m (0.0250)n}$ 

### $\frac{2.6 \times 10^{-3} = k(0.0150)^{m} (0.0500)^{n}}{1.3 \times 10^{-3} = k(0.0150)^{m} (0.0250)^{n}}$

9=(3)m m=2

#### rate = $k [ClO_3]^m [OH]^n$

#### Determine m

### Determine n

 $\frac{\mathbf{r}_3 = \mathbf{k} [C|O_3]^m [OH]^n}{\mathbf{r}_1 = \mathbf{k} [C|O_3]^m [OH]^n}$ 

 $\frac{r_2 = k [C|0_3]m[OH]n}{r_2 = k [C|0_3]m[OH]n}$ 

### $\frac{1.6 \times 10^{-2} = k(0.0450)^m (0.0250)^n}{1.3 \times 10^{-3} = k(0.0150)^m (0.0250)^n}$

### $\frac{2.6 \times 10^{-3} = k(0.0150)m}{1.3 \times 10^{-3} = k(0.0150)m} (0.0500)m}$

9=(3)m m=2

2=(2)n n=1





#### Determine k



## $k = \frac{1.30 \times 10^{-3} \text{ mol/ls}}{[0.0150 \text{ mol/l}]^2 [0.0250 \text{ mol/l}]^1}$

 $k = 231 L^2/mol^2s$