Rate Law and Order Reactions

First Order Reactions

* A reaction in which rate is linear
* k is used to represent the rate constant
* rate $=k[A]$
[A] vs time

Second Order Reaction

$\ln [\mathrm{A}]$ vs time

* Rate of reaction better fits a parabolic curve
* rate $=k[A]^{2}$

Quantitative Effects of Factors

* The mathematical relationship between the reaction rate and the factors that affect it is called the RATE LAW.
* The rate law may not be predicted theoretically. It must be determined experimentally.

Quantitative Effects of Factors

* To determine experimentally, the concentration of on reactant is changed while the other remains the same.
* The rate of chemical reaction is then measured and recorded.

Rate Laws

* The rate law is proportional to the product of the initial concentrations of the reactants to some exponential values
rate $=k[A] m[B] n$
A and B are reactants $m=$ order of the reaction with respect to A $n=$ order of the reaction with respect to B $k=$ rate constant
$m+n$ is the overall order of the reaction

How to Determine Order

First Order

Second Order

If $m=2$, the $r x n$ is $2^{\text {nd }}$ order wrt reactant A

When [A] is doubled, rate quadruples

When [A] is tripled, the rate is nine times faster

How to Determine Rate Constant

The rate constant can be determined from any experimental data using the following equation:

$$
k=\frac{\text { rate }}{[A]^{m[B] n}}
$$

Example

* You are told that experimental evidence gives you the following rate law equation:

$$
\text { * Rate }=k[A] 1[B] 2[C] 0
$$

Example

* Rate $=k[A] 1[B] 2[C] 0$
* What happens if the concentration of A is doubled?
* What happens if the concentration of B is tripled?
* What happens if the concentration of C is multiplied by four?

Example

* Rate $=k[A] 1[B] 2[C] 0$
* What happens if the concentration of A is doubled? Rate doubles
* What happens if the concentration of B is tripled? Rate multiplied by nine
* What happens if the concentration of C is multiplied by four? Rate stays the same

Example

* The following reaction is studied experimentally

$$
* 2 \mathrm{NO}_{(g)}+2 \mathrm{H}_{2(g)} \rightarrow \mathrm{Ns}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

* Data reveals that doubling nitrogen monoxide results in a fourfold increase, where doubling hydrogen only doubles reaction rates.
* The data from a concentration time graph shows the slow of the tangent is $0.25 \mathrm{M} / \mathrm{s},[\mathrm{NO} 0]=0.1 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.04 \mathrm{M}$.

Solution

* First we can determine order: * rate $=k\left[\mathrm{NO} 012\left[\mathrm{H}_{2}\right]\right.$

Solution

* Now substitute in graph data

$$
\text { * rate }=k[\mathrm{NO}]_{2}\left[\mathrm{H}_{2}\right] \text { where } \begin{aligned}
& \text { Rate }=0.25 \\
& {[\mathrm{NO}]=0.1 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=0.04 \mathrm{M}}
\end{aligned}
$$

Solution

* Now substitute in graph data

$$
\begin{array}{ll}
\text { * rate }=k[\mathrm{NO} 0]_{2}\left[\mathrm{H}_{2}\right] \text { where } & \begin{array}{l}
\text { Rate }=0.25 \\
\\
\\
{[\mathrm{NO} 0]=0.1 \mathrm{M}}
\end{array} \\
0.25=k[0.112[0.04] & {\left[\mathrm{H}_{2}\right]=0.04 \mathrm{M}} \\
k=(0.25) /[(0.112(0.04)] & \\
k=625 \mathrm{M}-2 / \mathrm{sec} &
\end{array}
$$

Solution

* Now substitute in graph data

$$
\begin{array}{ll}
\text { * rate }=k[N 0] 2\left[\mathrm{H}_{2}\right] \text { where } & \text { Rate }=0.25 \\
0.25=k[0.112[0.04] & {[\mathrm{NO} 0]=0.1 \mathrm{M}} \\
k=(0.251 /[10.112(0.04)] & {\left[\mathrm{H}_{2}\right]=0.04 \mathrm{M}} \\
k=625 \mathrm{M}-2 / \mathrm{sec} &
\end{array}
$$

So our full rate equation would be rate=625[N0]2[H2]

Challenge Yourself!

* Chlorine dioxide reacts with hydroxide ions to produce a mixture of chlorate and chlorite ions.
$2 \mathrm{ClO}_{2(\text { aq) }}+2 \mathrm{OH}_{\text {(aq) }} \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)}$

Experiment	[ClO21	[OH1	Rate
1	0.015	0.025	1.30×10^{-3}
2	0.015	0.05	2.60×10^{-3}
3	0.045	0.025	1.16×10^{-2}

Use this information to find k

rate $=\mathrm{k}\left[\mathrm{ClO}_{3}\right]_{\mathrm{m}}[\mathrm{OH}] n$

rate $=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}]^{n}$

Determine m

$\mathrm{r}_{3}=k\left[\mathrm{ClO}_{3}\right] m[\mathrm{OH}] n$
$r_{1}=k\left[\mathrm{ClO}_{3}\right] m[\mathrm{OH}] n$
$1.6 \times 10^{-2}=k(0.0450)^{m}(0.0250)^{n}$ $1.3 \times 10^{-3}=k(0.0150) m(0.0250)^{n}$

rate $=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}] n$

Determine m

$\mathrm{r}_{3}=\mathrm{k}\left[\mathrm{ClO} \mathrm{O}_{3}\right] \mathrm{m}[\mathrm{OH}] \mathrm{n}$
$r_{1}=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}]^{n}$

$1.6 \times 10^{-2}=k(0.0450) \mathrm{m}(0.0250)^{n}$ $1.3 \times 10^{-3}=k(0.0150)^{m}(0.0250)^{n}$
 $9=(3) \mathrm{m}$ $m=2$

rate $=k\left[\mathrm{ClO}_{3}\right] m[\mathrm{OH}] n$

Determine m

$\mathrm{r}_{3}=\mathrm{k}\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}] \mathrm{n}$
$r_{1}=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}]^{n}$

Determine n

 $\mathrm{r}_{2}=\mathrm{k}\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}]^{n}$ $\mathrm{r}_{2}=\mathrm{k}\left[\mathrm{ClO}_{3}\right]_{\mathrm{m}[\mathrm{OH}]^{n}}$$1.6 \times 10^{-2}=k(0.0450)^{m}(0.0250)^{n}$ $1.3 \times 10^{-3}=k(0.0150)^{\mathrm{m}}(0.0250)^{n}$
$2.6 \times 10^{-3}=k(0.0150)^{m}(0.0500)^{n}$ $1.3 \times 10^{-3}=k(0.0150)^{m}(0.0250)^{n}$

$$
\begin{gathered}
9=(3) m \\
m=2
\end{gathered}
$$

rate $=k\left[\mathrm{ClO}_{3}\right] m[\mathrm{OH}] n$

Determine m

$\mathrm{r}_{3}=\mathrm{k}\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}] \mathrm{n}$ $r_{1}=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}]^{n}$

$1.6 \times 10^{-2}=k(0.0450)^{m}(0.0250)^{n}$
$1.3 \times 10^{-3}=k(0.0150)^{\mathrm{m}}(0.0250)^{n}$

Determine n

 $\mathrm{r}_{2}=\mathrm{k}\left[\mathrm{ClO}_{3}\right] \mathrm{m}[\mathrm{OH}] \mathrm{n}$ $\left.r_{2}=k\left[\mathrm{ClO}_{3}\right] \mathrm{m}^{2} \mathrm{OH}\right]^{n}$$$
\begin{gathered}
9=(3) m \\
m=2
\end{gathered}
$$

$$
\begin{gathered}
2=(2)^{n} \\
n=1
\end{gathered}
$$

rate $=k\left[\mathrm{ClO}_{3}\right]_{2}^{2}[\mathrm{HH}]_{1} k=\frac{\text { rate }}{[A] \mathrm{m}[B] n}$

rate $=\mathrm{K}\left[\mathrm{ClO}_{3}\right]^{2}[\mathrm{OH}]^{1}$

$$
k=\frac{\text { rate }}{[A] m[B] n}
$$

Determine k

$k=$ rate $\left[\mathrm{ClO}_{3}\right]^{2}[\mathrm{OH}]^{1}$
$k=\quad 1.30 \times 10^{-3} \mathrm{~mol} / \mathrm{Ls}$ $[0.0150 \mathrm{~mol} / \mathrm{L}]^{2}[0.0250 \mathrm{~mol} / \mathrm{L}]^{1}$
$\mathrm{k}=231 \mathrm{LL}^{2} / \mathrm{mol}^{2} \mathrm{~s}$

