

Reaction quotient (Q): value obtained by substituting initial concentrations into the equilibrium expression

Reaction Quotient

Determining the Direction of a Reaction

- * Q>K: ratio of products to reactants is too large, reaction will proceed in reverse direction to reach equilibrium
- * Q=K: the system is at equilibrium
- * Q<K: ratio of products to reactants is too small, reaction will proceed in forward direction to reach equilibrium

* In the following reaction K was determined to be 0.45

* $2NO_2 \rightleftharpoons N_2O_4$

	ENO2Ji	[N204]i	Q
1	1.00	0	
2	0.30	0.010	
3	0.20	0.018	
4	0.50	0.25	
5	0	1.0	

* In the following reaction K was determined to be 0.45 Calculate Q [N₂0₄]

	[NO2]i	[N204]i	Q	
1	1.00	0		
2	0.30	0.010		
3	0.20	0.018		
4	0.50	0.25		
5	0	1.0		

 $*2N0_2 \Rightarrow N_20_4$

* In the following reaction K was determined to be 0.45 Calculate Q [N₂0₄]

 $[N0_{7}]$

	[NO2]i	[N204]i	Q	
1	1.00	0	0	
2	0.30	0.010	0.1 1	
3	0.20	0.018	0.45	
4	0.50	0.25	1.0	
5	0	1.0	Very Large	

 $*2N0_2 \Rightarrow N_2O_4$

* In the following reaction K was determined to be 0.45

* $2NO_2 \rightleftharpoons N_2O_4$

	[NO2]i	EN204]i	Q	Direction
1	1.00	0	0	Right
2	0.30	0.010	0.1 1	Right
3	0.20	0.018	0.45	Equilibrium
4	0.50	0.25	1.0	Left
5	0	1.0	Very Large	Left

* Calculate Q to determine the direction of reaction when the concentrations are: [CH₄]=0.100 M, [CO] = 0.500 M, [H2O] = 0.200 M and [H₂] = 0.800 M. The equilibrium constant for the reaction below is 5.67.

$$CH_{4(g)} + H_2O_{(g)} \leftrightarrow CO_{(g)} + 3H_{2(g)}$$

*

 $Q = [CO][H_2]^3$ $ECH_4 J EH_2 0 J$

$Q = [0.500][0.800]^3$ [0.100][0.200]

Q= 12.8

12.8 > 5.67

Q > K

Therefore the reaction moves to the LEFT

* The value of K for the following reaction is 0.40. The concentrations of gases are present in a container are: [N₂] = 0.10 mol/L, [H₂] = 0.30 mol/L, and [NH₃] = 0.20 mol/L. Is this mixture of gases at equilibrium? If not, in which direction will the reaction go to reach equilibrium?

 $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$

*

15 > 0.4 Q > K

Therefore the reaction moves to the LEFT

