Reaction Quotients

Reaction Quotient

* Reaction quotient (Q): value obtained by substituting initial concentrations into the equilibrium expression

Reaction Quotient

$Q=[C]^{\circ}[D]^{d}$ [A]a[B]b

Determining the
Direction of a Reaction

* Q>K: ratio of products to reactants is too large, reaction will proceed in reverse direction to reach equilibrium
* $Q=K$: the system is at equilibrium
* Q<K: ratio of products to reactants is too small, reaction will proceed in forward direction to reach equilibrium

Example

* In the following reaction K was determined to be 0.45
* $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$

	$\left[\mathrm{NO}_{2}\right] \mathrm{i}$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \mathrm{i}$	Q	
1	1.00	0		
2	0.30	0.010		
3	0.20	0.018		
4	0.50	0.25		
5	0	1.0		

Example

* In the following reaction K was determined to be 0.45 * $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$

	$\left[\mathrm{NO}_{2}\right] \mathrm{i}$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \mathrm{i}$	Q	
1	1.00	0		
2	0.30	0.010		
3	0.20	0.018		
4	0.50	0.25		
5	0	1.0		

Example

* In the following reaction K was determined to be 0.45 * $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$

	$\left[\mathrm{NO}_{2}\right] \mathrm{i}$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \mathrm{i}$	Q	
1	1.00	0	0	
2	0.30	0.010	0.11	
3	0.20	0.018	0.45	
4	0.50	0.25	1.0	
5	0	1.0	Very Large	

Example

* In the following reaction K was determined to be 0.45
* $2 \mathrm{NO}_{2} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{4}$

	$\left[\mathrm{NO}_{2}\right] i$	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right] i$	Q	Direction
1	1.00	0	0	Right
2	0.30	0.010	0.11	Right
3	0.20	0.018	0.45	Equilibrium
4	0.50	0.25	1.0	Left
5	0	1.0	Very Large	Left

Example

* Calculate Q to determine the direction of reaction when the concentrations are: $\left[\mathrm{CH}_{4}\right]=0.100 \mathrm{M},[\mathrm{CO}]=0.500 \mathrm{M}$. [H20] $=0.200 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.800 \mathrm{M}$. The equilibrium constant for the reaction below is 5.67 .
$* \quad \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$

Solution

$Q=\frac{\left[\mathrm{CO}_{2}\left[\mathrm{H}_{2}\right]^{3}\right.}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$Q=[0.500][0.800]^{3}$ [0.100][0.200]
$Q=12.8$

$12.8>5.67$

$Q>K$

Therefore the reaction moves to the LEFT

Example

* The value of K for the following reaction is 0.40 . The concentrations of gases are present in a container are: $\left[\mathrm{N}_{2}\right]=0.10$ $\mathrm{mol} / \mathrm{L},\left[\mathrm{H}_{2}\right]=0.30 \mathrm{~mol} / \mathrm{L}$, and $\left[\mathrm{NH}_{3}\right]=$ $0.20 \mathrm{~mol} / \mathrm{L}$. Is this mixture of gases at equilibrium? If not, in which direction will the reaction go to reach equilibrium?

Solution

$Q=\left[\mathrm{NH}_{3}\right]^{2}$ $\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$

$Q=[0.2]^{2}$ $[0.1][0.3]^{3}$
$Q=15$

$15>0.4$

$Q>K$
Therefore the reaction moves to the LEFT

Homework

* pg 460 \# 81-84

