Quantum Mechanical Model of the Atom

Introducing Quantum Numbers

* A quantum of energy is the amount of energy required to move an electron from one energy level to another.

The energy levels are like the rungs of a ladder but are not equally spaced.

* Bohr suggested the idea of orbits, and that electrons can jump from one orbit to another.

* One major problem with Bohr's model was it was virtually impossible to predict the exact location of a particle as <u>fast</u> or <u>small</u> as an electron.

* The term orbit was discarded and the term orbital was adopted.

* Orbit: An orbit is a 20 circular path the electrons travel around the nucleus.

Orbital: A 3D region in space where the probability of finding an electron is very high (mathematically determined probability function)

- Four quantum numbers are required to describe the state of the hydrogen atom.
- Principal Quantum Number
- * Orbital Quantum Number
- * Magnetic Quantum Number
- * Spin Quantum Number

* Principle Quantum Number, n

* One of the major changes to Bohr's model was the splitting of the various energy levels into sublevels. This helped account for the line spectra produced by the multi-electron atoms.

n=1	Ist energy level
n=2	2nd energy level
n=3	3rd energy level
n=4	4th energy level

1st energy level	no sublevels present
2nd energy level	2 sublevels present
3rd energy level	3 sublevels present
4th energy level	4 sublevels present
	2nd energy level 3rd energy level

* Orbital Quantum Number, l

* The secondary quantum number, l, describes the sublevel or the shapes of the orbitals present.

* Magnetic Quantum Number, me

* Indicates orientation of orbital in space.

* Values can range from - l to + l

* Example: when l = 1, possible

values of ℓ may include -1, 0, +1

* Spin Quantum Number, ms

- * Indicates the spin of electron.
- * Can only have two values, +1/2 or -1/2.

* Represent clockwise or counterclockwise spin.

- * In a given atom no two electrons can have the same set of quantum numbers (n, ℓ , m_{ℓ} , m_{s})
- * Since electrons in the same orbital have the same n, ℓ , and m_ℓ this means
 - they must have opposite ms

Name	Symbol	Allowed Value	Property
Principal	N	Positive Integers	Energy Level
Secondary (Orbital)	l	$0 \rightarrow n - 1$	Orbital Shape
Magnetic	me	$-l \rightarrow + l$	Orientation
Spin	Ms	+ 1/2 → -1/2	Spin