Quantum Mechanical Model of the Atom

Introducing Quantum Numbers

* A quantum of energy is the amount of energy required to move an electron from one energy level to another.
* The energy levels are like the rungs of a ladder but are not equally spaced.

* Bohr suggested the idea of orbits, and that electrons can jump from one orbit to another.

* One major problem with Bohr's model was it was virtually impossible to predict the exact location of a particle as fast or small as an electron.
* The term orbit was discarded and the term orbital was adopted.
* Orbit: An orbit is a 20 circular path the electrons travel around the nucleus.
* Orbital: A 30 region in space where the probability of finding an electron is very high (mathematically determined probability function)

orbitals

Quantum Numbers

* Four quantum numbers are required to describe the state of the hydrogen atom.
* Principal Quantum Number
* Orbital Quantum Number
* Magnetic Quantum Number
* Spin Quantum Number

Quantum Numbers

* Principle Quantum Number, n

* One of the major changes to Bohr's model was the splitting of the various energy levels into sublevels. This helped account for the line spectra produced by the multi-electron atoms.

Quantum Numbers

$n=1$	Ist energy level	
$n=2$	2nd energy level	
$n=3$	3rd energy level	
$n=4$	4 th energy level	

Quantum Numbers

$n=1$	1st energy level	no sublevels present
$n=2$	2nd energy level	2 sublevels present
$n=3$	3rd energy level	3 sublevels present
$n=4$	4th energy level	4 sublevels present

Quantum Numbers

* Orbital Quantum Number, ℓ

* The secondary quantum number, l, describes the sublevel or the shapes of the orbitals present.

Quantum Numbers

$\ell=0$	s
$\ell=1$	p
$\ell=2$	n
$\ell=3$	f

Quantum Numbers

$\ell=0$	s
$\ell=1$	p
$\ell=2$	n
$\ell=3$	f

Quantum Numbers

* Magnetic Quantum Number, m

* Indicates orientation of orbital in space.
* Values can range from - ℓ to $+\ell$

> * Example: when $l=1$, possible
> values of l may include $-1,0,+1$

Quantum Numbers

* Spin Quantum Number, ms
* Indicates the spin of electron.
* Can only have two values, +1/2 or $-1 / 2$.
* Represent clockwise or counterclockwise spin.

Quantum Numbers

* In a given atom no two electrons can have the same set of quantum numbers ($n, l, m_{\ell,} m_{s}$)
* Since electrons in the same orbital have the same $n_{,} l$, and m_{l} this means they must have opposite ms

Overview

Name	Symbol	Allowed Value	Property
Principal	n	Positive Integers	Energy Level
Secondary (Orbital)	ℓ	$0 \rightarrow n-1$	Orbital Shape
Magnetic	m_{ℓ}	$-\ell \rightarrow+\ell$	Orientation
Spin	m_{s}	$+1 / 2 \rightarrow-1 / 2$	Spin

