Electrical Current

Electrical Current

* The amount of charge that passes a point in a conducting wire every second
* Represented by I
* Measured in amperes (coulomb/second)
* Measured using an ammeter

Electric Current

$$
* I=Q / t
$$

* I=current (measured in amperes)
* $Q=$ charge moving past a
 point(measured in coulombs)
* $t=+$ ime (measured in seconds)

Sample Calculation

* If 240 coulombs of charge pass a point in a wire in five minutes, what is the current thought that point in the wire?
* Given
* $Q=240 C$ (Charge)
* $t=5 \mathrm{~min}$ (time)

Sample Calculation

* First, time must always be in seconds
* $t=5$ min
* $t=5 \mathrm{~min} \times 60$ seconds $=300$ seconds

Sample Calculation

* Required: I current)
* $1=$ Q / \dagger
* $1=240 \mathrm{C} / 300 \mathrm{sec}$
* $=0.80 \mathrm{~A}$
* Therefore 0.80A will move through that point in the conductor.

Potential Difference

Potential Difference

* Electrical Potential Energy: Electrical energy that is stored in a battery
* Joules(J): Measure of energy
* Potential Difference: the difference in potential energy per coulomb of charge at one point of the circuit compared to another point.
* Unit: Volt = J/C (Joule/Coulomb)

Potential Difference

$$
\text { * } E=V \times Q
$$

* $E=$ energy (measured in joules)
 * $V=$ Volts (measured in joules per coulomb)
 * $Q=$ charges passing a certain point(coulombs)

Sample Calculation

* In a battery, 45 J of chemical energy are converted into electrical energy y separating positive and negative charges. The energy places 15 C of charge at the negative terminus, leaving a deficit at the positive terminus. What is the potential difference between the negative and positive terminals of the battery?

Sample Calculation

* Given

* $E=45 \mathrm{~J}$
* $Q=15 \mathrm{C}$
* $v=$?

Sample Calculation

* Solution
* $V=E / Q$
* $V=45 \mathrm{~J} / 15 \mathrm{C}$
* $V=3 \mathrm{~J} / \mathrm{C}$
* A battery that uses 45 J of chemical energy to separate 15 C of charge has a potential difference of $3 \mathrm{~J} / \mathrm{C}$.

Electrical Power

Electrical Power

* Electrical Power is the amount of energy per unit time
* Measured is Watts (J/s)

$$
\begin{aligned}
& * P=\text { Power, measured in watts } \\
& * E=\text { Energy, measured in joules } \\
& * T=\text { Time, measured in seconds }
\end{aligned}
$$

Calculating Efficiency

Calculating Efficiency

* Efficiency is a measure of how much useful energy a device produces compared to the energy supplied to that device
* Percent Efficiency= useful energy output/ total energy input x 100

Sample Calculation

* A light bulb uses 100 J of energy and produces 35 J of light. Calculate the percent efficiency of the light bulb
* Answer

$$
\begin{aligned}
& \text { * } 35 \mathrm{~J} / 100 \mathrm{~J} / \times 100 \\
& \text { * } 35 \%
\end{aligned}
$$

Parallel vs Series Circuits

A quick review

Series Circuits

* Series Circuits:
* Has one path for current to flow
* Current is the same at any point in the circuit
* If a bulb is unscrewed, the current stops flowing

Parallel Circuits

* Parallel Circuits:

* More than one pathway for current to flow
* Current is not the same at each point in the circuit (Differs at each branch)
* If one bulb goes out, the other will not because they still have a supply of electrons
*

Parallel Circuits

* Characteristics of Parallel Circuits
* 1) If one bulb in one branch burn out, the bulbs in the remaining branched continue flowing.
* 2) The current (amps) can vary in each branch. The sum of the current in all branches is equal to that supplied by the battery

Parallel Circuits

* Characteristics of Parallel Circuits
 * 3) One bulb glows as brghtly as two bulbs

