# Electrical Current

#### Electrical Current

- \* The amount of charge that passes a point in a conducting wire every second
- \* Represented by I
- \* Measured in amperes (coulomb/second)
- \* Measured using an ammeter

#### Electric Current

- \* 1 = Q / t
  - \* 1=current (measured in amperes)
  - \* Q= charge moving past a point (measured in coulombs)
  - \* t=time (measured in seconds)

- \* If 240 coulombs of charge pass a point in a wire in five minutes, what is the current thought that point in the wire?
- \* Given
  - \* Q=240 C (Charge)
  - \* t=5 min (time)

- \* First, time must always be in seconds
  - \* t=5min
  - \* t=5 min x 60 seconds = 300 seconds

- \* Required: I (current)
- \* |= Q / t
- \* 1= 240 C/ 300 sec
- \* = 0.80 A
- \* Therefore 0.80A will move through that point in the conductor.

# Potential Vifference

#### Potential Vifference

- \* Electrical Potential Energy: Electrical energy that is stored in a battery
- \* Joules(J): Measure of energy
- \* Potential Difference: the difference in potential energy per coulomb of charge at one point of the circuit compared to another point.
  - \* Unit: Volt = J/C (Joule/Coulomb)

#### Potential Vifference



- \* E= energy (measured in joules)
- \* V=Volts (measured in joules per coulomb)
- \* Q= charges passing a certain point (coulombs)

\* In a battery, 45 J of chemical energy are converted into electrical energy y separating positive and negative charges. The energy places 15 C of charge at the negative terminus, leaving a deficit at the positive terminus. What is the potential difference between the negative and positive terminals of the battery?

\* Given

\* E= 45 J

\* Q= 15C

\* V =?

\* Solution

\* V= 45 J/ 15C

\* A battery that uses 45 J of chemical energy to separate 15C of charge has a potential difference of 3 J/C.



#### Electrical Power

\* Electrical Power is the amount of energy per unit time

\* Measured is Watts (J/s)



\* P = Power, measured in watts

\* E = Energy, measured in joules

\* T = Time, measured in seconds

# Calculating Efficiency

# Calculating Efficiency

- \* Efficiency is a measure of how much useful energy a device produces compared to the energy supplied to that device
- \* Percent Efficiency= useful energy output/total energy input x 100

- \* A light bulb uses 100 J of energy and produces 35 J of light. Calculate the percent efficiency of the light bulb
- \* Answer
  - \* 35 J/ 100 J/ x 100
  - \* 35%

# Parallel vs Series Circuits

A quick review

#### Series Circuits

- \* Series Circuits:
  - \* Has one path for current to flow
  - \* Current is the same at any point in the circuit
  - \* If a bulb is unscrewed, the current stops flowing

#### Parallel Circuits

- \* Parallel Circuits:
  - \* More than one pathway for current to flow
  - \* Current is not the same at each point in the circuit (Differs at each branch)
  - \* If one bulb goes out, the other will not because they still have a supply of electrons



#### Parallel Circuits

- \* Characteristics of Parallel Circuits
  - \* 1) If one bulb in one branch burn out, the bulbs in the remaining branched continue flowing.
  - \* 2) The current (amps) can vary in each branch. The sum of the current in all branches is equal to that supplied by the battery

#### Parallel Circuits

- \* Characteristics of Parallel Circuits
- \* 3) One bulb glows as brghtly as two bulbs