Percent Yield

Last new concept ... Hooray

J. KROPAC

Theoretical Yield

* Theoretical yield: the amount of product predicted by stoichiometric calculations
* **This value is calculated.

Actual Yield

* Actual yield: The actual amount of product that is recovered after a reaction is complete.
* **This value is measured

Competing Reactions

* Competing Reactions: A reaction that occurs along with the principal reaction that involves the reactants/ products of the principal reaction.
* Example

$$
\begin{aligned}
& * \mathrm{C} 3_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& * 2 \mathrm{C}_{3} \mathrm{H}_{8}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Calculating Percent Yield

Percentage Yield = actual yield $\times 100$ theoretical yield

Let's Try...

* In a laboratory experiment, 109.28 g of zinc sulfate is produced when 130.76 g of zinc is added to 478.83 g of copper (II) sulfate solution. What is the percent yield of copper.
$* \mathrm{Zn}_{(s)}+\mathrm{CuSO}_{4 \text { (aq) }} \rightarrow \mathrm{ZnSO}_{4(\text { aq })}+\mathrm{CU}_{(s)}$

Make a Plan

* 1) Find limiting reagent.
* 2) Using limiting reagent, use stoichiometry to solve for theoretical yield (amount of product).
* 3) Use theoretical yield to calculate percent yield.

Limiting Reagent

$$
* \mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4(\mathrm{laq})} \rightarrow \mathrm{ZnSO}_{4(\mathrm{laq})}+\mathrm{CU}_{(\mathrm{s})}
$$

$\begin{array}{ll}\mathrm{Mzn}^{2}=130.76 \mathrm{~g} & \mathrm{mcuso}=478.83 \mathrm{~g} \\ \mathrm{Mzn}_{\mathrm{zn}}=65.38 \mathrm{~g} / \mathrm{mol} & \mathrm{Mcuso}_{4}=159.61 \mathrm{~g} / \mathrm{mol}\end{array}$

Determine Limiting Reagent
 $Z n(s)+$
 $\mathrm{CuSO}_{4(\mathrm{aq})} \rightarrow \mathrm{ZnSO}_{4(\text { aq })}+\mathrm{CO}_{(s)}$

List given
values

Convert from mass to moles

```
n=m/M
n=}\frac{130.76\textrm{g}}{65.38\textrm{g}/\textrm{mol}
n=2.00 mols
```

maus04 $=478.83 \mathrm{~g}$
Mcus04 $=159.61 \mathrm{~g} / \mathrm{mol}$
$n=m / M$
$n=\frac{478.83 \mathrm{~g}}{159.61 \mathrm{~g} / \mathrm{mol}}$
$n=3.00 \mathrm{mols}$

$$
n=2.00 \text { mols }
$$

Determine Limiting Reagent

 $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4(\mathrm{lq})} \rightarrow \mathrm{ZnSO}_{4(\text { aq })}+\mathrm{CU}_{(s)}$| List given $\quad \mathrm{mzn}_{\mathrm{n}}=130.76 \mathrm{~g}$ values
 $M z_{n}=65.38 \mathrm{~g} / \mathrm{mol}$ | $\begin{aligned} & \text { mcuso4 }=478.83 \mathrm{~g} \\ & M_{\text {cus04 }}=159.61 \mathrm{~g} / \mathrm{mol} \end{aligned}$ |
| :---: | :---: |
| Convert from mass to moles | |
| $\begin{aligned} & n=m / \mathrm{M} \\ & n=\frac{130.76 \mathrm{~g}}{65.38 \mathrm{~g} / \mathrm{mol}} \\ & n=2.00 \mathrm{mols} \end{aligned}$ | $\begin{aligned} & n=m / \mathrm{M} \\ & n=\frac{478.83 \mathrm{~g}}{159.61 \mathrm{~g} / \mathrm{mol}} \\ & n=3.00 \mathrm{mols} \end{aligned}$ |
| $n=2.00$ mols | $n=3.00$ mols |
| Molar Ratio $\frac{1}{1}=\frac{2 \mathrm{~mol}}{\mathrm{nZnSO}_{4}}$ | $\frac{1}{1}=\frac{3 \mathrm{~mol}_{\text {ncuso }_{4}}}{\text { lat }}$ |
| $\mathrm{ZZnSO}_{4}=2 \mathrm{~mol}$ | $\mathrm{ZZnSO}_{4}=3 \mathrm{~mol}$ |

Limiting Reagent

The limiting reagent is zinc, we use the mass of zinc to determine the mass of the product.

Determine Theoretical Yield

Determine Theoretical Vield

Limiting Reagent

* Therefore, the theoretical yield of zinc sulfate is 322.94 g .

Determine Percent Yield

Percentage Yield = actual yield $\times 100$ theoretical yield

Given
Theoretical Yield: 322.94 g Actual Yield: 109.28

Determine Percent Yield

Percentage Yield = actual yield $\times 100$ theoretical yield

Determine Percent Yield

Percentage Yield = actual yield $\times 100$ theoretical yield

Given
Theoretical Yield: 322.94 g Actual Yield: 109.28
Percentage Yield $=\frac{109.28 \mathrm{~g}}{322.94 \mathrm{~g}} \times 100$
Percentage Vield= 33.84%

The end is near...

* Therefore, the percentage yield of zinc sulfate considering 130.76 g of zinc is 33.84\%.

To make you smile again...

I just met you, and this is crazy.

but here's my number, so call me maybe.

Now you try

* Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is used to make fertilizer using the following reaction.
$* \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{HNO}_{3(\text { lq })} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(s)}$
* You have 17.03 g of ammonia gas and 69.03 g of nitric acid as reactants. What mass in grams would you expect to be produced if the reaction is only 89.5% efficient?

