Organic Reactions

* During chemical reactions, bonds are broken and new bonds are formed.
* Covalent bonds are strong so many organic reactions are slow, a continuous supply of energy is needed and catalysts are often used to speed up reactions.

Types of Organic Reactions

* Substitutions
* Addition
* Combustion
* Elimination
* Condensation
* Esterification
* Hydrolysis
* Oxidation and Reduction

Substitution Reactions

* An atom replaces one that is present on the hydrocarbon
* Common in hydrocarbons with single bonds (alkanes)

Substitution Reactions

* Substitution with Halogens in Alkanes
$* \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl}$

The halogen has replaced an Hatom

Addition

* An atom is added on to the hydrocarbon
* Common in unsaturated hydrocarbons (alkenes, alkynes)

Addition

* Addition of Hydrogen (Hydrogenation)
* $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$

The double bond has been broken and the hydrogen has been added

Addition

* Addition of Hydrogen Halides

$$
* \mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{CH}_{2}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}
$$

The double bond has been broken and the hydrogen and halide has been added

Addition

* Addition of Hydrogen Halides

$$
* \mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{CH}_{2}+\mathrm{HCl} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CHCl}-\mathrm{CH}_{3}
$$

Markovnikov's Rule: When adding hydrogen halides, the carbon with the most hydrogens already receives the hydrogen

Addition

* Addition of Halogens

 * $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CBr}-\mathrm{CH}_{2} \mathrm{Br}$
The double bond has been broken and the halogen has been added

Combustion

* The reaction of hydrocarbons with oxygen to produces water vapour and carbon dioxide

* Require some form of energy

Combustion

Complete:

$\mathrm{CnHn}+\mathrm{O}_{2} \stackrel{\Delta}{\longrightarrow} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Incomplete:

$$
\mathrm{CnHn}+\mathrm{O}_{2} \triangle \mathrm{O}+\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

Elimination Reaction

* Occurs when atoms are removed and a double bond is formed.
* Only take place in presence of a string acid.
$* \mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$

Elimination Reaction

* Occurs when atoms are removed and a double bond is formed.
* Only take place in presence of a string acid.

$$
* \mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

As a rule, the II is taken from the carbon with the most carbon carbon bonds

Condensation

* Two smaller molecules joined together by the removal of a water molecule

0 H
II I
$\mathrm{R}-\mathrm{C}-\mathrm{OH}+\mathrm{H}-\mathrm{N}-\mathrm{R}^{\prime} \rightarrow \mathrm{R}-\mathrm{C}-\mathrm{N}-\mathrm{R}^{\prime}+\mathrm{H}_{2} \mathrm{O}$

Esterification

* A carboxylic acid and an alcohol combine to form an ester in the presence of a catalyst.
* Specialized hydrolysis reaction

II

$\mathrm{R}-\mathrm{C}-\mathrm{OH}+\mathrm{HO}-\mathrm{R}^{\prime} \rightarrow \mathrm{R}-\mathrm{C}-\mathrm{O}-\mathrm{R}^{\prime}+\mathrm{H}_{2} \mathrm{O}$
The bond formed is called an ester linkage

Hydrolysis

* A large molecule is broken down into smaller monomers using water.

R-C-N-R

Oxidation and

Reduction Reactions

* Oxidation: Increases the number of carbon-oxygen bonds
* Must happen in the presence of and oxidizing agent [0] (ex. KMnO_{4})
\square
II

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}
$$

Oxidation and

Reduction Reactions

* Reduction: Decreases the number of carbon-oxygen bonds
* Must happen in the presence of and reducing agent $[\mathrm{H}]$ (ex. LiAlH4)

0
 II

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}+[\mathrm{H}] \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}
$$

