Organic Reactions

* During chemical reactions, bonds are broken and new bonds are formed.

 Covalent bonds are strong so many organic reactions are slow, a continuous supply of energy is needed and catalysts are often used to speed up reactions.

Types of Organic Reactions

- * Substitutions
- * Addition
- * Combustion
- * Elimination
- * Condensation
- * Esterification
- * Hydrolysis

Substitution Reactions

* An atom replaces one that is present on the hydrocarbon

* Common in hydrocarbons with single bonds (alkanes)

Substitution Reactions

* Substitution with Halogens in Alkanes

$* C_2H_6 + Cl_2 \rightarrow C_2H_3Cl + HCl$

The halogen has replaced an H atom

* An atom is added on to the hydrocarbon

* Common in unsaturated hydrocarbons (alkenes, alkynes)

* Addition of Hydrogen (Hydrogenation) * $H_2C = CH_2$ + $H_2 \rightarrow H_3C - CH_3$

The double bond has been broken and the hydrogen has been added

* Addition of Hydrogen Halides * $H_3C - HC = CH_2 + HCI \rightarrow H_3C - CH_2 - CH_2CI$

The double bond has been broken and the hydrogen and halide has been added

* Addition of Hydrogen Halides * $H_3C - HC = CH_2 + HCI \rightarrow H_3C - CHCI - CH_3$

Markovnikov's Rule: When adding hydrogen halides, the carbon with the most hydrogens already receives the hydrogen

* Addition of Halogens * $H_2C = CH_2$ + $Br_2 \rightarrow H_2CBr - CH_2Br$

The double bond has been broken and the halogen has been added

* The reaction of hydrocarbons with oxygen to produces water vapour and carbon dioxide

* Require some form of energy

Combustion

Complete:

Confin + $0_2 \xrightarrow{\triangle} CO_2 + H_2O$

Incomplete:

Confin +
$$0_2 \xrightarrow{\triangle} C + CO + H_2O$$

Elimination Reaction

* Occurs when atoms are removed and a double bond is formed.

Only take place in presence of a string acid.

* CH₃ - CHOH - CH₃ \rightarrow CH₂=CH - CH₃ + H₂O

Elimination Reaction

- * Occurs when atoms are removed and a double bond is formed.
- * Only take place in presence of a string acid.
- * $CH_3 CHOH CH_3 \rightarrow CH_2 = CH CH_3 + H_2O$

As a rule, the H is taken from the carbon with the most carbon carbon bonds

* Two smaller molecules joined together by the removal of a water molecule

H

H

0

Tuesday, January 30, 18

0

* A carboxylic acid and an alcohol combine to form an ester in the presence of a catalyst.

* Specialized hydrolysis reaction

$R-C-OH + HO-R' \rightarrow R-C-O-R' + H_2O$

The bond formed is called an ester linkage

()

0

* A large molecule is broken down into smaller monomers using water.

0

H

R-C-N-R' + $H_2O \rightarrow R-C-OH$ + H-N-R'

Tuesday, January 30, 18

H

|| ||

0

Oxidation and Reduction Reactions

- * Oxidation: Increases the number of carbon-oxygen bonds
- * Must happen in the presence of and oxidizing agent [0] (ex. KMn04)

$$CH_3 - CH_2 - CH_2 - OH + [O] \rightarrow CH_3 - CH_2 - C - OH$$

Oxidation and Reduction Reactions

- * Reduction: Decreases the number of carbon-oxygen bonds
- * Must happen in the presence of and reducing agent [H] (ex. LiAlH4)

$$CH_3 - CH_2 - C - OH + CH_1 \rightarrow CH_3 - CH_2 - CH_2 - OH$$

I