The Nature of AcidBase Equilibria

Properties of Acids and

 Bases
Acids

-Sour tasting

- React with some metal to form H_{2} gas
- Turns blue litmus red
- Colourless in phenolphthalein
- Conduat eleatriaity

Arrhenius Acids and

 Bases* Acid: a substance that produces $\mathrm{H}_{3} \mathrm{O}^{+}$ when dissolved in water.
* $\mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
* $\mathrm{H}^{+}($aq) $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$(aq) (Hydronium)
* Base: a substance that produces OH^{-} when dissolved in water
$* \mathrm{NaOH}_{(\text {aq })} \rightarrow \mathrm{Na}^{+}{ }^{(a q)}+\mathrm{OH}^{-}($aq)

Bronsted-Lowry Acids and Bases

* Acids: proton (H^{+}) donors

$$
* \mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

* Bases: proton acceptors

$$
\begin{gathered}
* \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}\left(\mathrm{ll} \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq)})+\mathrm{OH}_{-(\mathrm{aq})}\right. \\
\mathrm{H}_{2} \mathrm{O}: \text { acts as an acid and a base } \\
\text { AMPHOTERIC }
\end{gathered}
$$

Bronsted-Lowry Acids and Bases

* Acid-Base Conjugate Pairs: two species that differ by a proton
* $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
* HF and F- make up a acid-base conjugate pair. F- is the conjugate base of HF.

Ion Product Constant of Water (Kw)

Autoionization of Water

 Acid Base Acid Base

Ion Product Constant of Water (Kw)

* The equilibrium constant for this reaction is called K_{w}
* $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H} 3 \mathrm{O}^{+}\right][\mathrm{OH}-]=1.0 \times 10-14$
* K_{w} changes with temperature and is equal to 1.0×10^{-14} at $25^{\circ} \mathrm{C}$.

Example

* Calculate the hydroxide ion concentration of a solution in which the hydrogen ion concentration is 3.6×10^{-3} M

Solution

$$
\begin{array}{ll}
* & \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}-]=1.0 \times 10^{-14} \\
* & \left(3.6 \times 1 \mathrm{O}^{-3}\right)[\mathrm{OH}]=1.0 \times 10^{-14} \\
* & {[\mathrm{OH}]=2.8 \times 10^{-12} \mathrm{M}}
\end{array}
$$

pH Scale

* $\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}+\right]$

Example

* The pH reading of a solution is 10.33 . What is its hydrogen ion concentration?

Solution

$$
\begin{aligned}
& * \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& *[\mathrm{LH}]=10^{-p H} \\
& *\left[H^{+}\right]=10^{-10.33} \\
& *[H \cdot]=4.7 \times 10^{-11} \mathrm{M}
\end{aligned}
$$

P-notation

* The p-notation can be used for any scale with low numbers.

$$
\text { * } \mathrm{pOH}=-\log [\mathrm{OH}]
$$

The Relationship between pH and pOH

$$
\begin{aligned}
& *\left[\mathrm{H} 30 \cdot \mathrm{ILOH} \cdot \mathrm{~B}=\mathrm{K}_{\mathrm{w}}\right. \\
& * \mathrm{pH}+\mathrm{pOH}=14.00
\end{aligned}
$$

Example 1

* Water taken from a lake was found to have $\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-5} \mathrm{M}$. Calculate the pH and pOH.

Solution

$$
\begin{aligned}
& * \mathrm{pH}=-\log \left[3.2 \times 10^{-5}\right] \\
& * \mathrm{pH}=4.49 \\
& * \mathrm{pOH}=14-4.49 \\
& * \mathrm{pOH}=9.51
\end{aligned}
$$

Strong Acids and Cases

* ionize (splits up into ions) almost 100\% in water

* NO EQUILIBRIUM

* mostly ions in solution

Example

* Calculate the pH of a $0.017 \mathrm{M} \mathrm{Ba}^{(O H)_{2}}$ solution

Solution

$* \mathrm{Ba}\left(\mathrm{OH}_{2(\mathrm{aq})} \rightarrow \mathrm{Ba}^{2+}{ }_{\text {(aq) }}+2 \mathrm{OH}^{-}{ }_{\text {(aq) }}\right.$

* $[\mathrm{OH}-]=2 \times\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=0.034 \mathrm{M}$
* $\mathrm{pOH}=-\log [\mathrm{OH}-]$
* $=-\log (0.034)$
* $\mathrm{pOH}=1.47$
* $\mathrm{pH}=14-\mathrm{pOH}$
* $=12.53$

Weak Acids and Bases

* Weak acids and weak bases are those that do not ionize completely in water
* A weak acid exists in equilibrium with its conjugate base.
* $\mathrm{HCN}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{ll}} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \text { Competition for } \\
& \text { protons } \\
& * \mathrm{HA}_{2}+\mathrm{H}_{2}=\mathrm{H}_{3} 0^{\circ}+\mathrm{A}^{*}
\end{aligned}
$$

* Both $\mathrm{H}_{2} \mathrm{O}$ and A^{-}are bases and compete for the proton
* If HA is a strong acid, A^{-}is an extremely poor proton acceptor
* If HA is a weak acid, A- is good proton acceptor

Homework

*p502\#21, 22, 23

