The Nature of Acid-Base Equilibria

Properties of Acids and Bases

Acids

- -Sour tasting
- React with some metal to form H_2 gas
- Turns blue litmus red
- Colourless in phenolphthalein
- Conduct electricity

-Bitter tasting

- -Feels slippery
- Turns red litmus blue
- Pink in phenolphthalein

Bases

- Conduct electricity

Arrhenius Acids and Bases

- * Acid: a substance that produces H₃O⁺ when dissolved in water.
 - * $HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$
 - * $H^{+}(aq)$ + $H_2O(1) \rightarrow H_3O^{+}(aq)$ (Hydronium)
- * Base: a substance that produces OHwhen dissolved in water

* NaOH(aq)
$$\rightarrow$$
 Na⁺(aq) + OH⁻(aq)

Bronsted-Lowry Acids and Bases

* $HF_{(aq)}$ + $H_2O_{(1)} \rightarrow H_3O^+_{(aq)}$ + $F_{(aq)}$

* Bases: proton acceptors

* NH₃(aq) + H₂O(1) \rightarrow NH₄⁺(aq) + OH⁻(aq)

H₂O: acts as an acid and a base AMPHOTERIC

Bronsted-Lowry Acids and Bases

- * Acid-Base Conjugate Pairs: two species that differ by a proton
 - $\ast \text{HF} \ast \text{HF} \ast \text{H}_20 \longrightarrow \text{F}^- \ast \text{H}_30^+$
- * HF and F⁻ make up a acid-base conjugate pair. F⁻ is the conjugate base of HF.

Ion Product Constant of Water (K_w)

Ion Product Constant of Water (K_w)

* The equilibrium constant for this reaction is called K_w

* $K_w = CH30+1COH-1 = 1.0 \times 10-14$

* K_w changes with temperature and is equal to 1.0 x 10⁻¹⁴ at 25°C.

* Calculate the hydroxide ion concentration of a solution in which the hydrogen ion concentration is 3.6 x 10⁻³ M

* $K_w = [H_30^+][OH^-] = 1.0 \times 10^{-14}$ * $(3.6 \times 10^{-3})[OH^-] = 1.0 \times 10^{-14}$ * $[OH^-] = 2.8 \times 10^{-12} M$

* pH = -log10[H30+]

* The pH reading of a solution is 10.33. What is its hydrogen ion concentration?

- ***** [H+] = 10-pH
- ***** [H+] = 10-10.33

* The p-notation can be used for any scale with low numbers.

***** pOH = -log[OH-]

The Relationship between pH and pOH

* $[H30+][0H-] = K_w$

***** pH + pOH = 14.00

* Water taken from a lake was found to have [H+]=3.2x10-5 M. Calculate the pH and pOH.

* pH = -log[3.2 x 10-5]

* pOH = 14 - 449

* pOH = 9.51

Strong Acids and Cases

* ionize (splits up into ions) almost 100% in water

* NO EQUILIBRIUM

* mostly ions in solution

* Calculate the pH of a 0.017 M Ba(OH)₂ solution

* $Ba(OH)_{2(aq)} \rightarrow Ba^{2+}(aq) + 2 OH^{-}(aq)$

* $[OH-] = 2 \times [Ba(OH)_2] = 0.034 M$

***** pOH= -log[OH-]

- ***** = -log(0.034)
- ***** pOH= 1.47

* pH = 14 - pOH

Weak Acids and Bases

* A weak acid exists in equilibrium with its conjugate base.

*
$$HCN_{(aq)}$$
 + $H_2O_{(1)} \rightleftharpoons H_3O^+_{(aq)}$ + $CN^-_{(aq)}$

Competition for protons

 $* HA + H_20 \rightleftharpoons H_30^+ + A^-$

If HA is a strong acid, A⁻ is an extremely poor proton acceptor

If HA is a weak acid, A⁻ is good proton acceptor

