Naming Polyatomic Compounds

A polyatomic ion is a group of two or more atoms treated as a single unit having a single oxidation state. Even though they are not binary compounds, they still contain a positive and negative charged ion held together by an ionic bond.

We name substances containing polyatomic ions the same way we name binary compounds.

Examples

Na₂SO₄

 $(NH_4)_2CO_3$

Pb(NO₃)₂

NH₄CI

When writing the formula for compounds containing polyatomic ions, we use the same 'crossing over' rule that we do for ionic compounds.

Examples

aluminum sulfate

potassium dichromate

copper (II) phosphate

magnesium carbonate

There are often four possible polyatomic ions formed when non-metallic atoms combine with oxygen (oxyanions).

'-ate' is considered the base polyatomic ion

'hypo- -ite' is two less oxygens '-ite' is one less oxygen 'per-' is one more oxygen

Examples

CIO ¹⁻ hypochlorite

ClO₂ ¹⁻ chlorite

ClO₃ 1- chlorate

ClO₄ ¹⁻ perchlorate

Polyatomic ions you will need to know for your quiz:

Hydroxide	OH 1-	carbonate	CO ₃ 2-
Nitrate	NO ₃ 1-	sulfate	SO ₄ ²⁻
Chlorate	CIO ₃ 1-	chromate	CrO ₄ ²⁻
Bromate	BrO ₃ 1-	dichromate	Cr ₂ O ₇ ²⁻
lodate	IO ₃ 1-	oxalate	C_2O_4 2-
Permanganate	MnO ₄ 1-	phosphate	PO ₄ 3-
Acetate	C ₂ H ₃ O ₂ 1-	ammonium	NH ₄ 1+