Transition Metals

* Some transition metals can form more than one ion

* In other words some have more than I ion form

* Use roman numeral to show which ion form is present

Metal lon charge	Roman Numeral
$1+$	I
$2+$	II
$3+$	III
$4+$	IV
$5+$	V
$6+$	VI
$7+$	VII

* Ni^{2+} or Nickel II, is called Nickel two.
* Fe^{3+} or lon III, is called Iron three

Examples

* Iron (III) chloride * Tin (IV) oxide
 * Manganese (II) oxide

* $\mathrm{Hg}_{2} \mathrm{O}$
* $\mathrm{CO}_{2} \mathrm{~S}_{3}$

* The key is to first remember that the transition metals have more than ONE possible charge

Polyatomic

Polyatomic

* A polyatomic ion
* Is a group of atoms.
* Has an overall ionic charge.
* Some examples of polyatomic ions are
* $\mathrm{NH}_{4}{ }^{+}$ammonium OH^{-}hydroxide
* $\mathrm{NO}_{3}{ }^{-}$nitrate $\mathrm{NO}_{2}{ }^{-}$nitrite
* $\mathrm{CO}_{3}{ }^{2-}$ carbonate $\mathrm{PO}_{4}{ }^{3-}$ phosphate
* The names of common polyatomic anions
* Some end in ate.
* $\mathrm{NO}_{3}{ }^{-}$nitrate $\mathrm{PO}_{4}{ }^{3-}$ phosphate
* Some end in ite.
* NO_{2} - nitrite $\mathrm{PO}_{3}{ }^{3-}$ phosphite
* Some will have hydrogen in name (or bi).
* $\mathrm{HCO}_{3}-$ hydrogen carbonate
* $\mathrm{ClO}_{4}{ }^{-}$perchlorate one oxygen more
* ClO_{3} - chlorate most common form
* ClO_{2} - chlorite one oxygen less
* CIO- hypochlorite two oxygens less
* If you need two or more Polyatomic ions, YOU MUST USE Parentheses with the subscript.
* Write the formula for Cu^{+2} and $\mathrm{NO}_{3}-1$
* You need $1 \mathrm{Cu}^{+2}$ and $2 \mathrm{NO}_{3}-1$
* You would write it like this: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
* The 2 tells us we need 2 of the $\mathrm{NO}_{3}-1$
* The positive ion is named first followed by the name of the polyatomic ion.
* NaNO_{3} sodium nitrate
* $\mathrm{K}_{2} \mathrm{SO}_{4}$ potassium sulfate
* $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{3} \quad$ iron(III) bicarbonate
* or iron(III) hydrogen carbonate
* $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{3}$ ammonium phosphite
* The formula of an ionic compound
* Containing a polyatomic ion must have a charge balance that equals zero(0).
* $\quad \mathrm{Na}^{+}$and $\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{NaNO}_{3}$
* With two or more polyatomic ions encloses the polyatomic ions in parentheses.
* Mg^{2+} and $2 \mathrm{NO}_{3}{ }^{-} \rightarrow \quad \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

