Molar Mass and the Mole

An Introduction to Calculating Chemical Reactions...

Counting Atoms

* The mass of a single atom, or even molecule is incredibly small. So small, that using the mass of a single atom has little purpose in real world applications.

Counting Atoms

* In 1811, Amedeo Avagradro determined that any convenient quantity of matter must contain an enormous number of atoms, ion, molecules, ect.

Counting Atoms

* Joeself Loschmidt estimated that 2.68 x 1025 is a convenient and measurable number of entities to deal with in chemistry.

Counting Atoms

* Using carbon as an example, it has been showed that 6.023×10^{23} atoms of carbon has a mass of 12.01. This number was signifigant as that is the numerical value of the atoms mass.

Mole

* Mole: Used to measure the amount of a substance: conatins as many particles as exactly 12 g of carbon-12.

Representative Particles for Elements and Compounds:
-Particle for pure monoatomic elements(Na) are atoms.
-Particle for diatomic molecules $\left(\mathrm{O}_{2}\right)$ and compounds (H20) are molecules
-Particles for pure ionic compounds (Nal) are formula units

Avagadro's Constant

* Avagadro's Constant: The number of particles in one mole of a substance; a value that is equal to 6.02×10^{23} particles.

Example

* A mole is just a quick way of summarizing large quantities. A pair giraffes:

A dozen giraffes

A mole (6.02×10^{23}) of giraffes nevermind

Example

* A mole is just a quick way of summarizing large quantities. A pair giraffes:

A dozen giraffes

Using Avagadro's Constant

* The relationship between moles, individual particle and Avagardro's constant can be expressed as:

$$
n=\frac{\mathbb{N}}{\mathbf{N}_{A}}
$$

$n=$ number of moles
$\mathrm{N}=$ number of particles
$N_{A}=$ Avagadro's constant

Example

* Determine the number of particles in 1.87 moles of butane gas, $\mathrm{C}_{4} \mathrm{H}_{10}$.
* Given: $n=1.87 \mathrm{~mol}$
* Given: $N_{A}=6.02 \times 10^{23}$ * Required: N

Example

$N=n \times N_{A}$

$N=1.87 \mathrm{~mol} \times 6.02 \times 10^{23}$ molecules
mol
$N=1.13 \times 10^{24}$ molecules

Therefore there are 1.13 molecules in 1.87 moles of butane gas.

Example

* Determine the number of particles in 4.98 moles of sodium chloride.
* Given: $n=4.98$ mol
* Given: $N_{A}=6.02 \times 10^{23}$
* Required: N

Example

$N=n \times N_{A}$

$\mathrm{N}=4.98 \mathrm{~mol} \times 6.02 \times 10^{23}$ formula units
mol
$N=3.00 \times 10^{24}$ formula units

Therefore there are 3.00 formula units in 4.98 moles of sodium chloride.

Example

* If you have 1.37×10^{22} iron atoms, how many moles of iron do you have?
* Given: $N=1.37 \times 10^{22}$
* Given: $N_{A}=6.02 \times 10^{23}$
* Required: n

Example

$n=N / N_{A}$

$n=1.38 \times 10^{22}$ atoms of iron
6.02×10^{23} atoms/mol
$N=0.02$ moles of iron

Therefore there are 0.02 moles of iron.

Homework

* Solve each of the following problems. Be sure to show all of your work and express the final answer with the correct number of significant digits.
* How many moles are there in:

$$
\begin{aligned}
& \text { * } 1.50 \times 10^{22} \text { atoms of Ar? } \\
& * \quad 4.60 \mathrm{~g} \text { of } \mathrm{Na} ?
\end{aligned}
$$

* Calculate the number of moles of SO_{2} present in 3.01×10^{23} molecules of the gas
* Calculate the number of atoms of sulfur present in the same sample of SO_{2}
* Calculate the number of moles of oxygen atoms present in the same sample.
* If exactly four moles of an element have a mass of 124 g , what would the mass of a single mole of the element be? Identify the element.
* How many formula units are present in 119.0 g of potassium bromide?
* How many atoms of iron are there in 167.4 g of iron?

Atomic Mass

* Atomic Mass: The mass of one atom of an element
* Expressed in atomic mass units, u
* Found on the periodic table
* Eg, Atomic Mass of hydrogen is $\mathbf{v}=1.00$, atomic mass of copper is $u=63.55$

Molecular Mass

* Molar Mass(M): Mass of one mole of a substance.
* One mole of any element has a mass that is equal to the element's mass expressed in grams.

Atomic Molar Mass

* Atomic molar mass: mss of one mole of any atom on the periodic table. * Units are g/mol.

Example

* What would the atomic molar mass of calcium be?

Example

* From the periodic table we know that calcium has a mass of 40.08. So the atomic molar mass of calcium would be $40.08 \mathrm{~g} / \mathrm{mol}$.

Molecular Molar Mass

* Molecular Molar Mass: The mass of one mole of molecules of a substance. * Units are g/mol.

Example

* What would the molecular molar mass of carbon dioxide be?

Example

* What would the molecular molar mass of carbon dioxide be?
* $\mathrm{McO}_{2}=\mathrm{Mc}_{\mathrm{c}}+2 \mathrm{M}_{0}$
* $\mathrm{McO}_{2}=(12.01 \mathrm{~g} / \mathrm{mol})+2(16.00 \mathrm{~g} / \mathrm{mol})$
* $\mathrm{McO}_{2}=44.01 \mathrm{~g} / \mathrm{mol}$
* Therefore the molar mass of carbon dioxide is $44.01 \mathrm{~g} / \mathrm{mol}$

Formula Unit Molar Mass

* Formula Unit Molar Mass: The mass of

 one mole of formula units of a substance.* Units are g/mol

Example

* What would the molecular molar mass of calcium iodide be?
* $\mathrm{Mcal}_{2}=\mathrm{Mca}_{\mathrm{ca}}+2 \mathrm{M}_{1}$
* $M_{\text {cal }}=(40.08 \mathrm{~g} / \mathrm{mol})+2(126.90 \mathrm{~g} / \mathrm{mol})$
* $\mathrm{Mcal}^{\text {cal }}=293.88 \mathrm{~g} / \mathrm{mol}$
* Therefore the molar mass of calcium iodide is $293.88 \mathrm{~g} / \mathrm{mol}$

Linking Molar Mass and Moles

* We know that molar mass represents the mass in grams per mole of substance ($\mathrm{g} / \mathrm{mol}$)
* Therefore, $M=m / n$
* Where $M=$ molar mass
* Where $m=$ mass
* Where $n=$ number of moles

Example

* What is the mass of 2.0 moles of Na ? * Given: $n=2.0$ moles
 * Given: $\mathrm{M}=23.00 \mathrm{~g} / \mathrm{mol}$
 * Required: m

Example

* $m=n \times M$

$m=2.0$ mols $x \quad 23 \mathrm{~g}$ mol

Therefore the mass of 2.0 mols of Na is 46 grams.

Example

* How many moles are in 57.5 g of NaCl ? * Given: $m=57.5 \mathrm{~g}$
 * Given: M=58.4 g/mol
 * Required: n

Example

$$
\begin{aligned}
& * n=m / M \\
& n=57.5 \mathrm{~g} \\
& 58.4 \mathrm{~g} / \mathrm{mol} \\
& n=0.98 \mathrm{mols}
\end{aligned}
$$

Therefore their are 0.98 mols of NaCl in a 57.5 g sample.

Calculating the Number of Atoms From Mass

* How to calculate number of atoms from mass

* 1) Step 1: Calculate the number of moles using $n=m / M$
* 2) Step 2: Calculate the number of atoms using $N=n \times N_{A}$

Example

* Calculate the number of atoms of gold in a 275.8 g nugget of pure gold.
* Given: $m=275.8 \mathrm{~g}$
* Given: $M=196.97$
* Given: $N_{A}=6.02 \times 10^{23}$
* Required: N

Step 1

$$
\begin{aligned}
& * n=m / M \\
& n=\frac{275.8 \mathrm{~g}}{196.97 \mathrm{~g} / \mathrm{mol}}
\end{aligned}
$$

$n=1.40$ mols

Step 2

$N=n \times N_{A}$

$\mathrm{N}=1.40 \mathrm{~mol} \times 6.02 \times 10^{23}$ atoms
mol
$N=8.43 \times 10^{23}$ atoms

Therefore there are 8.43×10^{23} atoms of gold in one nugget that weighs 275.8 g .

Homework

$$
\begin{aligned}
& \text { * p. } 237 \# 41-44 \\
& \text { * p. } 239 \# 51-54 \\
& \text { * p. } 242 \# 61,62
\end{aligned}
$$

