Molecular Forces

Intramolecular Forces

Intramolecular forces are those forces between the atoms found inside a single molecule.

* Electronegativity: describes the relative ability of an atom to attract electrons

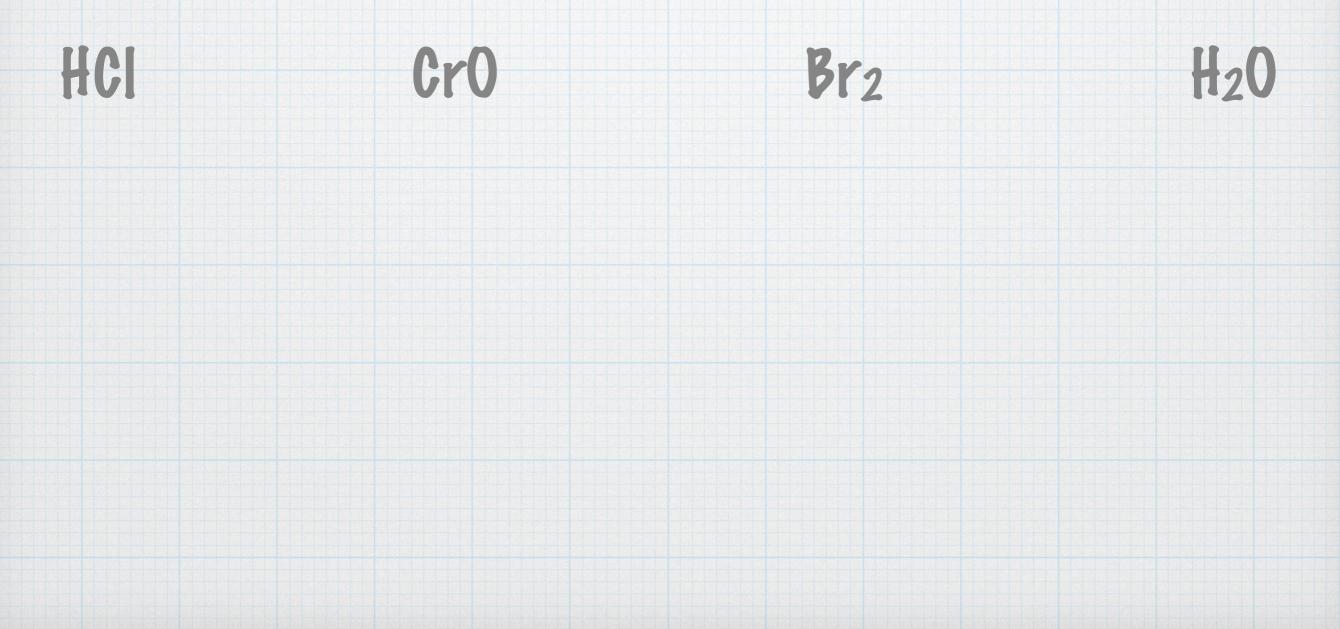
* We can determine the nature of a bond based on EN (electronegativity difference).

Using EN to determine bond type

Non-polar Covalent

0.4

Polar Covalent 1.7


lonic

* Determine the bond types of:

Covalent bonds

- Covalent bonds are characterized by the sharing of electrons between two or more atoms
- Between nonmetals and two atoms of the same element, or elements close to each other on the periodic table
- Two atoms with similar electronegativity will not exchange an electron from their outermost shell

Ionic Compounds

- * lonic bonding occurs when there is a large difference in electronegativity
- * This leads to the loss of an electron from the less electronegative atom and the gain of that electron by the more electronegative atom, resulting in two ions.
- These oppositely charged ions feel an attraction to each other, and this electrostatic attraction constitutes an ionic bond.
- * lonic bonding occurs between a nonmetal and a metal

Intermolecular Forces

Intermolecular forces are those forces between molecules. These forces determine the boiling point of substances and state.

Intermolecular Forces

* Three types of force can operate between molecular/covalent molecules:

Weakest

* Dispersion Forces or London Forces

* Dipole-dipole interactions

* Hydrogen bonds

Dispersion Forces/ London Forces

 Very weak forces of attraction between molecules resulting from momentary dipoles occurring due to uneven electron distributions

Instantaneous uneven distribution of electrons in He atom

e-

e-

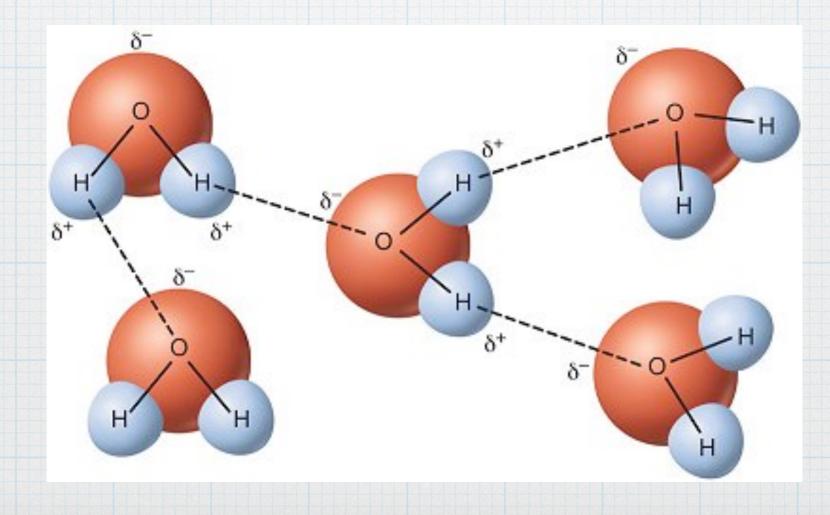
Instantaneous dipole

Induced dipole on neighboring He atom. Resultant attractive force

Dispersion Forces/ London Forces

- * The more electrons that are present in the molecule, the stronger the dispersion forces will be.
- Dispersion forces are the only type of intermolecular force operating between non- polar molecules

Vipole-dipole Interactions


 The partial positive charge on one molecule attracted to the partial negative charge on another molecule.

 Occur between molecules that have permanent net dipoles (polar molecules)

$$\delta^{+} H - CI \qquad \delta^{+} \delta^{-} H - CI \qquad H - CI \qquad H - CI \qquad H - CI \qquad \delta^{+} \delta^{-} H - CI \qquad H - CI \qquad \delta^{+} \delta^{-} H - CI \qquad \delta^{+} \delta^{-} \delta^{-} H - CI \qquad \delta^{+} \delta^{-} \delta$$

Hydrogen bonds

 Occur between molecules that have a permanent net dipole resulting from hydrogen being covalently bonded to either fluorine, oxygen or nitrogen.

