Limiting and Excess Regents

J. KROPAC

Limiting Regents

* Limiting Reagents: the reactant that is used up first and limits the amounts of product that is obtained. The reaction stops and the other reactant(s) are in excess.
* Table salt, NaCIIs), can be formed by the reaction of sodium metal and chlorine gas:
* $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{(g)} \rightarrow 2 \mathrm{NaCl}_{(s)}$
* A reaction mixture contains 45.98 g of sodium an 142.0 g of chlorine. Calculate the mass of sodium chloride that is produced.

Step 1

* Step 1: List Given Values
* $M_{\mathrm{Na}}=45.98 \mathrm{~g}$
* $\mathrm{mcl}_{\mathrm{Cl}}=142.0 \mathrm{~g}$
* $\mathrm{M}_{\mathrm{Na}}=22.99 \mathrm{~g} / \mathrm{mol}$
* $\mathrm{Mcl}^{2}=2 \mathrm{MCl}$

$$
\begin{aligned}
& =2 \times 35.45 \mathrm{~g} / \mathrm{mol} \\
& =70.90 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Step 2

* Step 2: Complete Reaction Chart

Balance the equation

$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \quad 2 \mathrm{NaCl}_{(s)}$

* Step 2: Complete Reaction Chart

Balanee the equation	$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$	$2 \mathrm{NaCl(s)}$	
Mass hefore reaction ocours	45.98 g	142.0 g	0 g

Step 2

* Step 2: Complete Reaction Chart

| Balance the
 equation | $2 \mathrm{Na}_{(s)}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$ | $2 \mathrm{NaCl}_{(s)}$ |
| :---: | :---: | :---: | :---: |
| Mass before
 reaction occurs | $45.98 \mathrm{~g} \quad 142.0 \mathrm{~g}$ | 0 g |
| How much do I
 need for the
 reaction? | $m=n \times \mathrm{M}$
 $m=2 \times 22.99$
 $m=45.98 \mathrm{~g}$$\quad$$m=n \times M$
 $m=1 \times 70.90$
 $m=70.90 \mathrm{~g}$ | |

* Step 2: Complete Reaction Chart

Balance the equation	2Na(s) +	$\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$	2NaCl(s)
Mass before reaction occurs	45.98 g	142.0 g	0 g
Mass Required How much do I need for the reaction?	$\begin{aligned} & m=n \times M \\ & m=2 \times 22.99 \\ & m=45.98 \mathrm{~g} \end{aligned}$	$\begin{aligned} & m=n \times M \\ & m=1 \times 70.90 \\ & m=70.90 \mathrm{~g} \end{aligned}$	
How much am I left with after the reaction?	$\begin{aligned} & \text { mass bef } \\ & 45.98-45.98 \\ & =0 \mathrm{~g} \end{aligned}$	ore- mass requir $\begin{gathered} 142.0-70.90 \\ =71.1 \mathrm{lg} \end{gathered}$	

Step 3

* Step 3: Identify Limiting and Excess Reagents
* Sodium used up in reaction and therefore is limiting reagent. Some chlorine left over after reaction, therefore excess reagent.
* Mass of available sodium determine the mass of NaCl formed

Now that we know the limiting reagent, we can use this mass to solve for the amount of product produced

$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{(\mathrm{g})} \rightarrow 2 \mathrm{NaCl}_{(s)}$

List given values
$M_{\mathrm{Na}}=45.98 \mathrm{~g}$
$M_{N a}=22.99 \mathrm{~g} / \mathrm{mol}$
$M_{\mathrm{NaCl}}=$?
M Nacl $=116.88 \mathrm{~g} / \mathrm{mol}$

$2 \mathrm{Na}_{(s)}+\mathrm{Cl}_{(\mathrm{g})} \rightarrow 2 \mathrm{NaCl}_{(s)}$

$\mathrm{MNa}_{\mathrm{a}}=45.98 \mathrm{~g}$
$M_{N a}=22.99 \mathrm{~g} / \mathrm{mol}$
Gonvert from mass to moles
$n=m / \mathrm{M}$
$n=\frac{45.98 \mathrm{~g}}{22.99 \mathrm{~g} / \mathrm{mol}}$
$n=2.00 \mathrm{mols}$
Molar Ratio

$n=2.00$ mols

Ratio given $=$ ngiven
Ratio required nrequired

$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{(g)} \rightarrow 2 \mathrm{NaCl}_{(s)}$

List given values

$$
\begin{aligned}
& \mathrm{MNa}_{\mathrm{Na}}=45.98 \mathrm{~g} \\
& \mathrm{M}_{\mathrm{Na}}=22.99 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\text { mnacl }^{\text {n }}=?
$$

$M_{\text {NaCl }}=116.88 \mathrm{~g} / \mathrm{mol}$
Convert from mass to moles
$n=m / M$
$n=45.98 \mathrm{~g}$
$22.99 \mathrm{~g} / \mathrm{mol}$
$n=2.00$ mols

Molar Ratio
$n_{n a}=2.00$ mols
nNaCl $=2.00$ mols
$\frac{\text { Ratio } \mathrm{Na}}{\text { Ratio } \mathrm{NaCl}}=n_{n_{\mathrm{NaCl}}} \rightarrow \frac{2}{2}=\frac{2 \mathrm{~mol}}{n_{\mathrm{NaCl}}} \rightarrow n_{\mathrm{NaCl}}=2.00$ mols

$2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{(\mathrm{g})} \rightarrow 2 \mathrm{NaCl}_{(s)}$

* Therefore, 116.90 g of NaCI will be produced when there is 45.98 g of sodium an 142.0 g of chlorine.

Now you try...

* Aluminum and oxygen react to form aluminum oxide, as shown in the following balanced chemical equation:
* $4 \mathrm{Al}_{(s)}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
* A reaction mixture contains 134.9 g of aluminum and 96.0 g of oxygen. Calculate the mass of aluminum oxide that is present.

