

Limiting Regents

* Limiting Reagents: the reactant that is used up first and limits the amounts of product that is obtained. The reaction stops and the other reactant(s) are in

excess.

* Table salt, NaCl(s), can be formed by the reaction of sodium metal and chlorine

gas:

* 2Na(s) + $Cl_{(g)} \rightarrow 2NaCl_{(s)}$

* A reaction mixture contains 45.98g of sodium an 142.0 g of chlorine. Calculate the mass of sodium chloride that is produced.

* Step 1: List Given Values

* $m_{Cl2} = 142.0g$

= 2 x 35.45 g/mol

=70.90 g/mol

Balance the equation

 $2Na_{(s)}$ + $Cl_{2(g)} \rightarrow 2NaCl_{(s)}$

Balance the equation	2Na(s)	+	Cl 2(g) -	\rightarrow	2NaCl(s)	
Mass before reaction occurs	45.98 g		142.0g		Og	

Balance the equation	2Na(s) +	$Cl_{2(g)} \rightarrow$	2NaCl(s)
Mass before reaction occurs	45.98 g	142.0g	Og
How much do l need for the reaction?	$\begin{array}{ll} m=n \ x \ M & m=n \ x \ M \\ m=2 \ x \ 22.99 & m=1 \ x \ 70.90 \\ m=45.98 \ g & m=70.90 \ g \end{array}$		

Balance the equation	2Na(s) +	$Cl_{2(g)} \rightarrow$	2NaCl(s)
Mass before reaction occurs	45.98 g	142.0g	Og
Mass Required How much do I need for the reaction?	m= n x M m= 2 x 22.99 m= 45.98 g	m= n x M m= 1 x 70.90 m= 70.90 g	
How much am I left with after the reaction?	mass bet 45.98 - 45.98 =0g	fore- mass reg 142.0 - 70.90 =71.1g	uired

* Step 3: Identify Limiting and Excess Reagents

* Sodium used up in reaction and therefore is limiting reagent. Some chlorine left over after reaction, therefore excess reagent.

* Mass of available sodium determine the mass of NaCl formed Now that we know the limiting reagent, we can use this mass to solve for the amount of product produced

2Na(s) + $Cl(g) \rightarrow 2NaCl(s)$

List given values

 $m_{Na} = 45.98 \text{ g}$ $M_{Na} = 22.99 \text{ g/mol}$

MNaCI = ? MNaCI = 116.88 g/mol

* Therefore, 116.90 g of NaCl will be produced when there is 45.98 g of sodium an 142.0 g of chlorine.

Now you try...

- * Aluminum and oxygen react to form aluminum oxide, as shown in the following balanced chemical equation:
- * 4Al(s) + $3O_{2(g)} \rightarrow 2Al_{2}O_{3(s)}$
- A reaction mixture contains 134.9 g of aluminum and 96.0 g of oxygen. Calculate the mass of aluminum oxide that is present.