Isotopes

- Two atoms are isotopes if they have the same number of protons, but they have different numbers of neutrons.
- This means that:
- Isotopes are atoms of the same element.
- Isotopes have different atomic masses.
- Isotopes have different number of neutrons.

Isotope Notation

-When using isotope notation we use:

- Z to represent atomic number
- A to represent mass number

To find the number of neutrons, N, subtract the atomic number from the mass number:

$$
\mathrm{N}=\mathrm{A}-\mathrm{Z}
$$

mass number atomic number 7

Chemical Symbol

Example Using Magnesium:

- Magnesium has 3 isotopes, here is how they compare. Using isotope notation, they are:

24
${ }_{12} \mathrm{Mg}$
25
Mg

$P=$

$E=$
$\mathrm{N}=$

26
${ }_{12} \mathrm{Mg}$
$P=$
$\mathrm{E}=$
$\mathrm{N}=$

- They have different number of neutrons and different atomic masses.

The Role of the Neutron

- As the atom grows, the number of neutrons increases more rapidly.
- In larger atoms neutrons have a stabilizing effect (act as glue that hold atoms together).

Average Atomic Mass

- In the periodic table, the atomic mass of element is given in atomic mass units(u).
- To determine the atomic mass of an element, you must determine the average atomic mass.

Isotopic Abundance (\% Abundance)

- Isotopic Abundance is the amount of a given isotope of an element that exists in nature, expressed as a percentage of the total amount of this element.

Calculating Average Atomic Mass

Average Atomic Mass =

(Isotope 1 Abundance)(Mass Isotope 1) + (Isotope 2 Abundance)(Mass Isotope 2) . . .

*Remember isotope abundance is represented as a percentage, so it is expressed as a decimal.

Example: Using the information in the table below to calculate the average atomic mass of copper

Isotope	Mass(u)	Isotopic Abundance (\%)
copper-63	62.93	69.2
copper-65	64.93	30.8

J. Kropac

Example: Using the information in the table below to calculate the average atomic mass of iron

Isotope	Mass(u)	Isotopic Abundance (\%)
Iron-56	56.00	5.10
Iron-55	55.00	3.15
Iron-54	54.00	91.75

