Isotopes

- Two atoms are isotopes if they have the same number of protons, but they have different numbers of neutrons.
- This means that:
 - Isotopes are atoms of the **same element**.
 - Isotopes have <u>different atomic masses</u>.
 - Isotopes have different number of neutrons.

Isotope Notation

- When using isotope notation we use:
 - Z to represent atomic number
 - A to represent mass number

SCH 4C J. Kropac

Example Using Magnesium:

• Magnesium has 3 isotopes, here is how they compare. Using isotope notation, they are:

²⁴ 12 Mg	²⁵ Mg	$^{26}_{12}$ Mg
P=	P=	P=
E=	E=	E=
N=	N=	N=

• They have different number of neutrons and different atomic masses.

The Role of the Neutron

- As the atom grows, the number of neutrons increases more rapidly.
 - In larger atoms neutrons have a stabilizing effect (act as glue that hold atoms together).

Average Atomic Mass

- In the periodic table, the atomic mass of element is given in atomic mass units(u).
- To determine the atomic mass of an element, you must determine the *average atomic mass*.

Isotopic Abundance (% Abundance)

 Isotopic Abundance is the amount of a given isotope of an element that exists in nature, expressed as a percentage of the total amount of this element.

Calculating Average Atomic Mass

Average Atomic Mass = <u>(Isotope 1 Abundance)(Mass Isotope 1)</u> + (Isotope 2 Abundance)(Mass Isotope 2)...

*Remember isotope abundance is represented as a percentage, so it is expressed as a decimal.

Example: Using the information in the table below to calculate the average atomic mass of copper

Isotope	Mass(u)	Isotopic Abundance (%)
copper-63	62.93	69.2
copper-65	64.93	30.8

Example: Using the information in the table below to calculate the average atomic mass of iron

Isotope	Mass(u)	Isotopic Abundance (%)
Iron-56	56.00	5.10
Iron-55	55.00	3.15
Iron-54	54.00	91.75