Ideal Gas Laws

J. KROPAC

Challenge Question

\author{

* Let's consider the gas law's so far...
}

Challenge Question

* Let's consider the gas law's so far... * Boyles: $P_{1} V_{1}=P_{2} V_{2}$

Challenge Question

* Let's consider the gas law's so far... * Boyles: $P_{1} V_{1}=P_{2} V_{2}$
* Charles: $T_{1} V_{2}=T_{2} V_{1}$ * Gay-Lussac's Law: $T_{1} P_{2}=T_{2} P_{1}$

Combined Gas Law

* We have just created the combined gas law:

$$
* P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}
$$

Combined Gas Law

Boyle's
 Law

Charles Law

Gay-Lussac's Law

Avagadrós Law

$V_{1} n_{2}=V_{2 n_{1}}$

* Equal volume of gas under equal temperature and pressure will have the same number of moles.

Homework

$$
\begin{aligned}
& * p .542 \# 1-4 \\
& * p .545 \# 1,2,6
\end{aligned}
$$

Gas Law Summary

Gas Law EquationBoyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Charles Law

$$
T_{1} V_{2}=T_{2} V_{1}
$$Gay-Lussac's Law

$$
T_{1} P_{2}=T_{2} P_{1}
$$

Combined Gas Law$P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1}$Avagadrós Law$V_{1 n_{2}}=V_{2 n_{1}}$

WETMCGOMBTMS

Ideal Gas Law

* A hypothetical gas that obeys all the gas laws perfectly under all conditions
* It does not condense into a liquid when cooled.
* Graphs of its volume + temperature and its pressure + temperature relationships are perfectly straight lines.

$P V=n R T$

* P-pressure in kPa
* V - volume in L
* n - moles
* I-temperature in K
* R - the universal gas constant

$$
* R=8.314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K}
$$

Example

* How many moles of oxygen will be trapped in a 6.0 L vessel at 1.2 atm and 28.40 C?

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{I} \\
& * P=1.2 \mathrm{~atm} \\
& * T=28.40 \mathrm{C} \\
& * R=8.314 \mathrm{kPa} \mathrm{\cdot L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{~L} \\
& * P=1.2 \mathrm{~atm} \\
& * T=28.40 \mathrm{C} \quad T_{\mathrm{k}}=T_{0}+27.3 \\
& * R=8.314 \mathrm{kPaol} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Temperature must be in K!

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{I} \\
& * P=1.2 \mathrm{~atm} \\
& * T=28.40 \mathrm{C} \quad T_{\mathrm{k}}=28.4+27 \mathrm{~m} \\
& * R=8.314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{~L} \\
& * P=1.2 \mathrm{~atm} \\
& * T=28.40 \mathrm{C} \quad T_{\mathrm{k}}=301.4 \\
& * R=8.314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{~L} \\
& * P=1.2 \mathrm{~atm} \quad P_{\mathrm{kPa}}=P_{\text {atm }} \times 101.325 \\
& * T=301.4 \\
& * R=8.314 \mathrm{kPa} \mathrm{\cdot L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Pressure must be in kPa !

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{~L} \\
& * P=1.2 \mathrm{~atm} \quad P_{\mathrm{kPa}}=1.2 \times 101.325 \\
& * T=301.4 \\
& * R=8.314 \mathrm{kPa} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

* Given

$$
\begin{aligned}
& \text { * } V=6.0 \text { I } \\
& \text { * } P=1.2 \mathrm{~atm} \quad P_{k P a}=121.59 \\
& \text { * } T=301.4 \\
& \text { * } R=8.314 \mathrm{kPaol} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

* Given

$$
\begin{aligned}
& * V=6.0 \mathrm{I} \\
& * P=121.59 \mathrm{kPa} \\
& * T=301.4 \mathrm{~K} \\
& * R=8.314 \mathrm{kPa} \mathrm{\cdot L} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

Solution

PV=nRT

$(121.59 \mathrm{kPa})(6.0 \mathrm{~L})=n(8.314 \mathrm{KPa} \cdot \mathrm{L} / \mathrm{mol} \cdot \mathrm{K})(301.4 \mathrm{~K})$

$$
n=\frac{(121.59 \mathrm{kPa})(6.0 \mathrm{~L})}{(8.314 \mathrm{kPa} \mathrm{\cdot L} / \mathrm{mol} \cdot \mathrm{~K})(301.4 \mathrm{~K})}
$$

$n=0.29 \mathrm{~mol}$

There are 0.29 moles of oxygen trapped in the vessel.

Extension Question

* What mass of oxygen will be trapped in a 6.0 L vessel at 1.2 atm and $28.4^{\circ} \mathrm{C}$?

Solution

* Given

* $n_{02}=0.29$ moles
* $\mathrm{M}_{02}=32.00 \mathrm{~g} / \mathrm{mol}$
* $m=n \times M$
* (0.29 moles x $32.00 \mathrm{~g} / \mathrm{mol}$)
* 9.28 g

There are 9.28 moles of oxygen trapped in the vessel.

Homework

* p. 556 \# 1, 22, 24
* Challenge (for bragging rights . . . and prizes) - p. 556 \#30

