

J. KROPAC

Challenge Question

Challenge Question

* Let's consider the gas law's so far ...

* Boyles: $P_1V_1 = P_2V_2$

Challenge Question

Let's consider the gas law's so far ... Boyles: P₁V₁=P₂V₂ Charles: T₁V₂=T₂V₁

* Gay-Lussac's Law: T1P2=T2P1

Combined Gas Law

* We have just created the combined gas law:

* $P_1V_1T_2=P_2V_2T_1$

Combined Gas Law

Boyle's Law Charles Law

Gay-Lussac's Law

V1n2=V2n1

* Equal volume of gas under equal temperature and pressure will have the same number of moles.

* p. 542 #1 - 4 * p. 545 #1, 2, 6

Gas Law Summary

Gas Law	Equation
Boyle's Law	P ₁ V ₁ = P ₂ V ₂
Charles Law	T ₁ V ₂ =T ₂ V ₁
Gay-Lussac's Law	T1P2=T2P1
Combined Gas Law	P ₁ V ₁ T ₂ = P ₂ V ₂ T ₁
Avagadro's Law	V1n2=V2n1

- * A hypothetical gas that obeys all the gas laws perfectly under all conditions
 - * It does not condense into a liquid when cooled.
 - * Graphs of its volume + temperature and its pressure + temperature relationships are perfectly straight lines.

* T - temperature in K

* R - the universal gas constant

* R = 8.314 kPa-L / mol-K

* How many moles of oxygen will be trapped in a 6.0 L vessel at 1.2 atm and 28.4°C?

(121.59 kPa) (6.0 L) = n (8.314 kPa-L / mol-K) (301.4 K)

n= (121.59 kPa) (6.0 L) (8.314 kPa-L / mol-K) (301.4 K)

n= 0.29 mol

There are 0.29 moles of oxygen trapped in the vessel.

* <u>What mass</u> of oxygen will be trapped in a 6.0 L vessel at 1.2 atm and 28.4°C?

* no2=0.29 moles

* (0.29 moles x 32.00 g/mol)

* 9.28 g

There are 9.28 moles of oxygen trapped in the vessel.

* p. 556 # 1, 22, 24

* Challenge (for bragging rights . . . and prizes) - p. 556 #30