

* The central atom's single bonds must be identical in a molecule

* Sometimes this requires the central atom's orbitals to combine and form new hybrid orbitals.

* central atom is carbon and it is bonded to 4 surrounding hydrogen atoms

* In order to form 4 bonds, the last 4 electrons must be in alone in their orbitals.

 There is one s electron and there are three p electrons. These orbitals will combine and be called sp³ orbitals

* Consider AlCl₃, what type of hybrid orbital would you find?

* Consider AlCl₃, what type of hybrid orbital would you find?

* Aluminum has three valence electrons

- * Aluminum has three valence electrons
- It's electron configuration would be ENe13s²3p¹

* Consider AlCl₃, what type of hybrid orbital would you find?

* Aluminum has three valence electrons

It's electron configuration would be ENe13s²3p¹

* This can be combined as 3sp²

* Consider AlCl₃, what type of hybrid orbital would you find?

- * Aluminum has three valence electrons
- * It's electron configuration would be [Ne]3s²3p¹
- * This would hybridize as [Ne]3s13p13p1
- * This can be combined as 3sp²

* A sigma bond is defined as a bond that is symmetrical around the bond axis of the two nuclei

Sigma (o) Bonds

- s orbital + s orbital
- н + н → нн н· + ×н → н×н
- * Example: H₂
 - * Each hydrogen has as electron in an s orbital, when this s orbitals overlap, a bond is formed.
 - * The sigma bond has a lower energy level than other individual s orbital, making it more stable.

Sigma (o) Bonds

* Example: HF

* Hydrogen has a half filled s and fluorine has a half filled p. The two overlap to form a sigma bond.

Sigma (o) Bonds

C. p orbital + p orbital ('head-on' overlap)

* Each F has a half filled p orbital. They overlap to form a sigma bond.

Overlap of p orbitals leading to pi (π) bond

* A pi bond is formed by sideways or lateral overlapping orbitals

* In ethene (H₂C=CH₂), the first bond formed between carbons is a sigma bond (end to end overlap)

* The second bond formed between carbons is a pi bond (sideways overlap)

* Ethyne (HC=CH), there is one sigma and two pi bonds