Hess's Law

Law of Additivity of Reaction Enthalpies

* The enthalpy change of a physical or chemical process depends only on the beginning conditions (reactants) and the end conditions (products).

Law of Additivity of Reaction Enthalpies

* Enthalpy change is independent of the pathway of the process and the number of intermediate steps in the process
* For any chemical change made in several steps, the net ΔH is equal to the sum of the ΔH values of the separate steps

For example, there are many ways to get from $\mathrm{C}_{(s)}$ and $\mathrm{O}_{2(g)}$ to $\mathrm{CO}_{2(g)}$:
The direct route:

$$
C_{(s)}+O_{2(G)} \rightarrow C O_{2(G)} \quad \Delta H=-393.0 \mathrm{~kJ} / \mathrm{mol}
$$

Or a less direct route:

$$
\begin{array}{ll}
\mathrm{C}_{(s)}+1 / 2 \mathrm{O}_{2(0)} \rightarrow C O_{(0)} & \Delta H=-110.5 \mathrm{~kJ} / \mathrm{mol} \\
C O_{(0)}+1 / 2 O_{2(0)} \rightarrow C O_{2(G)} & \Delta H=-283.0 / \mathrm{mol} \\
& \Delta H=-393.0 / \mathrm{mol}
\end{array}
$$

Predicting ΔH using Hess's Law

* Hess's Law may be used when the molar enthalpy may not be measured using calorimetry
* If 2 or more equations with known enthalpy changes can be added together to form a new "target" equation, then their enthalpies may be added together to yield the enthalpy of the "target" equation

Predicting ΔH using Hess's Law

* Two rules to remember
* when you reverse an equation, you need to change the sign of ΔH (multiply by -1)
* when you multiply the coefficients of an equation, you need to multiply ΔH by the same number

Example

* Calculate ΔH for $\mathrm{S}_{(\mathrm{s})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})}$
* Given:
* $\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(g)} \quad \Delta \mathrm{HI}=-320.5 \mathrm{~kJ}$
* $\mathrm{SO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})} \quad \mathrm{AH} 2=-75.2 \mathrm{~kJ}$

* This can be represented by an enthalpy diagram

enthalpy, H $\frac{S_{(s)}+02(g)}{} \Delta H=-320.5 \mathrm{~kJ}$

* This can be represented by an enthalpy diagram

enthalpy, H \begin{tabular}{c}
$\mathrm{S}_{(\mathrm{s})}+0_{2(\mathrm{~g})}$

\hline | $\Delta H=-320.5 \mathrm{~kJ}$ |
| ---: |
| $\mathrm{SO}_{2(\mathrm{~g})}$ |

\hdashline | $\Delta H=-75.2 \mathrm{~kJ}$ |
| ---: |
| $\mathrm{SO}_{3(\mathrm{~g})}$ |

\end{tabular}

Example

* Determine the enthalpy change of the following reaction:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{~s})
$$

You are given the following information:
$1 \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
$\triangle H=-283.0 \mathrm{~kJ}$
$22 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
$\triangle H=-824.2 \mathrm{~kJ}$

Example

* Let's start by comparing equation 1 to the overall equation
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{s})$
$1 \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-283.0 \mathrm{~kJ}$

Example

* Let's start by comparing equation 1 to the overall equation
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{s})$
$1 \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2(\mathrm{gl})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-2830$
$\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2(\mathrm{~g})}$ are on the correct side but the coefficients are not correct.

Example

* Let's start by comparing equation 1 to the overall equation

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{~s})
$$

$1 \mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-283.0 \mathrm{~kJ}$
$\mathrm{CO}_{(g)}$ and $\mathrm{CO}_{2(g)}$ are on the correct side but the coefficients are not correct.

Solution: Multiply by 3 lincluding \triangle H) to gets them to matoh
$3 \mathrm{CO}_{(\mathrm{g})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}$

Example

* Now compare equation 2 to the overall equation
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{s})$
$22 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \triangle \mathrm{H}=-824.2 \mathrm{~kJ}$

Example

* Now compare equation 2 to the overall equation
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{s})$
2 2 $\mathrm{Fe}_{(\mathrm{s})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \triangle \mathrm{H}=-824.2 \mathrm{~kJ}$
The coefficients are correct but Fe and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are on the wrong side.

Example

* Now compare equation 2 to the overall equation

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~g})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{~s})
$$

$22 \mathrm{Fe}_{(\mathrm{s})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \triangle \mathrm{H}=-824.2 \mathrm{~kJ}$
The coefficients are correct but Fe and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are on the wrong side.
Solution: Reverse the equation (this will change the sign in front of $\triangle \mathrm{H})$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-1(-824.2) \mathrm{kJ}
$$

Example

* Combine the two reactions

$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-1(-824.2) \mathrm{kJ}$
 $3 \mathrm{CO}_{(\mathrm{g})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}$
 $\triangle H=3(-283.0) \mathrm{kJ}$

Example

* Combine the two reactions

$$
\begin{array}{rlrl}
\mathrm{Fe}_{2} \mathrm{O}_{3(s)} & \rightarrow 2 \mathrm{Fe}_{(s)}+3 / 2 \mathrm{O}_{2(g)} & \triangle H=-1(-824.2) \mathrm{kJ} \\
3 \mathrm{CO}(g)+3 / 2 \mathrm{O}_{2(g)} \rightarrow 3 \mathrm{CO}_{2(g)} & \triangle H=3(-283.0) \mathrm{kJ}
\end{array}
$$

$3 \mathrm{CO}_{(\mathrm{g})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{Fe}(\mathrm{s}) \quad \triangle H=-24.8 \mathrm{~kJ}$

Therefore the enthalpy change of this reaction is -24.8 kJ

Example

* How much energy is obtained from the roasting of one mole of zinc sulfide ore. The reaction can be represented in the equation $\mathrm{ZnS}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})}$
* Consider:

$$
\begin{array}{ll}
* \mathrm{ZnO}_{(\mathrm{s})} \rightarrow \mathrm{Zn}(\mathrm{~s})+1 / 20_{2(\mathrm{~g})} & \triangle H=350.5 \mathrm{~kJ} \\
* \mathrm{~S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} & \triangle H=-296.8 \mathrm{~kJ} \\
* \mathrm{ZnS}(\mathrm{~s}) \rightarrow \mathrm{Zn}(\mathrm{~s})+\mathrm{S}_{(\mathrm{s})} & \triangle H=206.0 \mathrm{~kJ}
\end{array}
$$

Equation 1

$\mathrm{ZnS}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})}-\mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{2(\mathrm{~g})}$
$\mathrm{ZnO}(\mathrm{s}) \rightarrow \mathrm{Zn}(\mathrm{s})+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=350.5 \mathrm{~kJ}$

* ZnO on wrong side, reverse and change sign on $\triangle H$
$\mathrm{Zn}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO} \mathrm{O}_{(\mathrm{s})} \quad \triangle \mathrm{H}=-1(350.5 \mathrm{~kJ})$

Equation 3

Equation 1

Equation 2

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(g)} \\
& \mathrm{ZnO}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \triangle H=350.5 \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{ZnS}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{2(\mathrm{~g})}$
$\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ}$

* Zn 0 on wrong side, reverse and change sign on \triangle * Both sides and coefficients match, \triangle
stays the same
$\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)} \quad \triangle \mathrm{H}=-1\left(350.5 \mathrm{~kJ} \quad \mathrm{~S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ}\right.$

Equation 3

Equation 1

Equation 2

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})} \\
& \mathrm{ZnO}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \triangle \mathrm{H}=350.5 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(g)} \\
& \mathrm{S}_{(s)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \triangle \mathrm{H}=-296.8 \mathrm{~kJ}
\end{aligned}
$$

* ZnO on wrong side, reverse and change sign on \triangle * Both sides and coefficients match, $\triangle H$ stays I the same
$\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)} \quad \triangle H=-1(350.5 \mathrm{~kJ}) \quad \mathrm{S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle H=-296.8 \mathrm{~kJ}$

Equation 3

$\mathrm{ZnS}(s)+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(\mathrm{s})}+\mathrm{SO}_{2(\mathrm{~g})}$
$Z n S(s) \rightarrow Z_{(s)}+S_{(s)} \quad \triangle H=206.0 \mathrm{~kJ}$

* Both sides and coefficients match, \triangle

H stays the same

$$
\mathrm{ZnS}_{(s)} \rightarrow \mathrm{Zn}(\mathrm{~s})+\mathrm{S}_{(\mathrm{s})} \quad \triangle H=206.0 \mathrm{~kJ}
$$

Equation 1

Equation 2

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})} \\
& \mathrm{ZnO}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \triangle \mathrm{H}=350.5 \mathrm{~kJ}
\end{aligned}
$$

* ZnO on wrong side, reverse and change sign on \triangle H
$\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO} 0_{(s)} \quad \triangle H=-1(350.5 \mathrm{~kJ})$

Equation 3

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(g)} \\
& \mathrm{ZnS}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+\mathrm{S}_{(s)} \quad \triangle \mathrm{H}=206.0 \mathrm{~kJ}
\end{aligned}
$$

* Both sides and coefficients match, $\triangle H$ stays the same
$\mathrm{ZnS}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+\mathrm{S}_{(s)} \triangle H=206.0 \mathrm{~kJ}$

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(g)} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(g)} \\
& \mathrm{S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle H=-296.8 \mathrm{~kJ}
\end{aligned}
$$

* Both sides and coefficients match, $\triangle H$ stays the same
$\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ}$

Combine Equations

$$
\begin{aligned}
& \mathrm{Zn}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(\mathrm{s})} \quad \triangle \mathrm{H}=-1(350.5 \mathrm{~kJ}) \\
& \mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ} \\
& \mathrm{ZnS}_{(s)} \rightarrow \mathrm{Zn}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \triangle \mathrm{H}=206.0 \mathrm{~kJ}
\end{aligned}
$$

Equation 1

Equation 2

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})} \\
& \mathrm{ZnO}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \triangle \mathrm{H}=350.5 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})} \\
& \mathrm{S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \triangle \mathrm{H}=-296.8 \mathrm{~kJ}
\end{aligned}
$$

* Zn0 on wrong side, reverse and change sign on \triangle H
$\mathrm{Zn}(\mathrm{s})+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(\mathrm{s})} \quad \triangle H=-1(350.5 \mathrm{~kJ})$

Equation 3

$\mathrm{ZnS}(s)+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{2(\mathrm{~g})}$
$\mathrm{ZnS}(\mathrm{s}) \rightarrow \mathrm{Zn}(\mathrm{s})+\mathrm{S}_{(s)} \quad \triangle \mathrm{H}=206.0 \mathrm{~kJ}$

* Both sides and coefficients match, $\triangle H$ stays the same
*Both sides and coefficients match, $\triangle H$ stays the same
$\mathrm{S}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ}$

Combine Equations

$$
\begin{aligned}
\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(g)} & \rightarrow \mathrm{ZnO}_{(s)} \quad \triangle H=-1(350.5 \mathrm{~kJ}) \\
\mathrm{S}_{(s)}+\mathrm{O}_{2(g)} & \rightarrow \mathrm{SO}_{2(g)} \quad \triangle H=-296.8 \mathrm{~kJ} \\
\mathrm{ZnS}(\mathrm{~s}) & \rightarrow \mathrm{Zn}_{(s)}+\mathrm{S}_{(s)} \triangle H=206.0 \mathrm{~kJ}
\end{aligned}
$$

$\mathrm{ZnS}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{2(\mathrm{~s})} \triangle \mathrm{H}=-441.3 \mathrm{~kJ}$
$\mathrm{ZnS}_{(\mathrm{s})} \rightarrow \mathrm{Zn}_{(\mathrm{s})}+\mathrm{S}_{(\mathrm{s})} \triangle \mathrm{H}=206.0 \mathrm{~kJ}$

Equation 1

Equation 2

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(\mathrm{~g})} \\
& \mathrm{ZnO}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \triangle \mathrm{H}=350.5 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(g)} \\
& \mathrm{S}_{(s)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \triangle \mathrm{H}=-296.8 \mathrm{~kJ}
\end{aligned}
$$

* ZnO on wrong side, reverse and change sign on \triangle H
$\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO} 0_{(s)} \quad \triangle H=-1(350.5 \mathrm{~kJ})$

Equation 3

Combine Equations

$$
\begin{gathered}
\mathrm{Zn}_{(s)}+1 / 2 \mathrm{O}_{2(g)} \rightarrow \mathrm{ZnO}_{(s)} \quad \triangle H=-1(350.5 \mathrm{~kJ}) \\
\mathrm{S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle H=-296.8 \mathrm{~kJ} \\
\mathrm{ZnS}_{(s)} \rightarrow \mathrm{Zn}_{(s)}+\mathrm{S}_{(s)} \triangle H=206.0 \mathrm{~kJ}
\end{gathered}
$$

$\mathrm{ZnS}_{(s)}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}_{(s)}+\mathrm{SO}_{2(s)} \triangle \mathrm{H}=-441.3 \mathrm{~kJ}$

* Both sides and coefficients match, $\triangle H$ stays the same
$\mathrm{S}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})} \quad \triangle \mathrm{H}=-296.8 \mathrm{~kJ}$
$\mathrm{ZnS}(\mathrm{s})+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{2(\mathrm{~g})}$
$\mathrm{ZnS}(\mathrm{s}) \rightarrow \mathrm{Zn}(\mathrm{s})+\mathrm{S}_{(\mathrm{s})} \quad \triangle \mathrm{H}=206.0 \mathrm{~kJ}$
* Both sides and coefficients match, $\triangle H$ stays the same
$Z n S(s) \rightarrow Z n(s)+S_{(s)} \triangle H=206.0 \mathrm{~kJ}$

Therefore total enthalpy change is $-441.3 \mathrm{~kJ}$

Homework

* pg. 316 \# $41-50$

