

+ + +

* In electrolytic cells, electricity is used to force chemicals to undergo a redox reaction

In galvanic cells, electricity is produced spontaneously from a redox reaction

* An arrangement of two half-cells that can produce electricity spontaneously.

* An arrangement of two half-cells that can produce electricity spontaneously.

* Let's look at the reaction:

* Ni(s) + CuCO₃ \rightarrow NiCO₃ + Cu(s)

* Break it down into net ionic

* Ni_(s) + Cu²⁺ + CO₃²⁻ \rightarrow Ni²⁺ + CO₃²⁻ + Cu_(s)

* Ni(s) + Cu²⁺ \rightarrow Ni²⁺ + Cu(s)

* Now let's break these into HALF REACTIONS

* $Ni(s) \rightarrow Ni^{2+} + 2e^{-}$ OXIDATION

* $2e^- + Cu^{2+} \rightarrow Cu(s)$ reduction

Galvanic cells also have salt bridges which maintains the neutrality of the cell.

* Anode: Negative electrode, where oxidation occurs

* Cathode: Positive electrode, where reduction occurs

Create a diagram of a Galvanic cell using copper and nickel -Nickel is higher than copper on the activity sequence, nickel goes at the anode.

Write the half reactions

Now show the flow of electrons

Now show the flow of ions

