
External Changes on Equilibrium

Le Chatelier's Principle

- * Temperature, pressure and changes in concentration affect equilibrium
- * These factors will make the system undergo an equilibrium shift
- * The outcome is governed by LE CHATELIER'S PRINCIPLE
- Any change to a chemical reaction at equilibrium causes the reaction to proceed in the direction that reduces the effect of the change

Effects of Concentration Changes

 Addition of a reactant or product causes the reaction to proceed in the direction that consumes the added substance.

 $H_2 + N_2 \rightleftharpoons NH_3$

Effects of Concentration Changes

* Removal of a reactant or product causes the reaction to proceed in the direction that produces the missing substance.

Concentration Changes

* $CO_{2(g)}$ + 2 H₂O(I) = H₃O⁺(aq) + HCO₃⁻(aq)

* increase in acidity will cause increase in CO2

* $2 SO_{3(g)} = 2 SO_{2(g)} + O_{2(g)}$

* increase in SO3 drives reaction to favor SO2

Concentration Changes

Summary:

-Increased concentration of a product causes a shift to reactant formation.

-Increased concentration of a reactant causes a shift to product formation

-Decreasing reactant causes shift to reactant formation

-Decreasing products causes a shift to product formation

Effects of Temperature Change

- Heat is released in an exothermic reaction and is absorbed in an endothermic reaction.
- * Changes in temperature have the same effect as changes in concentration shifts.

Effects of Temperature Change

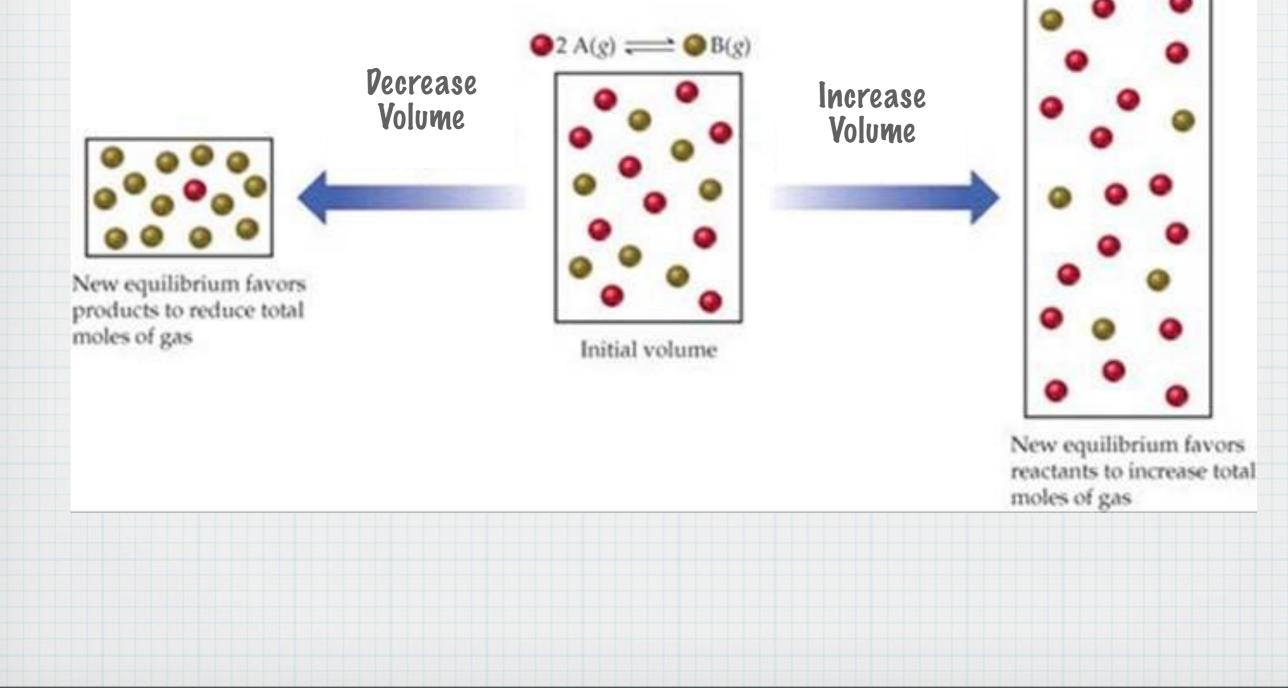
* $N_{2(g)}$ + $O_{2(g)}$ + 180.5 kJ \Rightarrow 2NO(g)

- * If the mixture is heated, the equilibrium shifts toward NO.
- * If the mixture is cooled, the equilibrium shifts toward N2 and O2.

Effects of Temperature Change

* In an endothermic system, an increase in temperature increases K_{eq}

* In an exothermic system, an decrease in temperature causes a decrease in K_{eq}


Effects of Temperature Change Changes

Summary:

-Temperature increase favours the endothermic side (heat absorbing side)

-Temperature decrease favours the exothermic side (heat producing side)

- * Only applies for gaseous equilibria
- Decrease in volume or an increase in pressure causes reaction to proceed in the direction of fewer number of moles of gaseous reactant or product.
 - * These occupy a smaller volume

* Example: $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$

* increase in volume drives the reaction to the right

* decrease in volume drives the reaction to the left

Summary:

-Pressure increase shifts so the number of particles decreases

-Pressure decrease shifts so the number of particles increases

Changes that do not affect equilibrium

* Adding Catalysts

 Pecreases time required for reaction but does not affect the final position of equilibrium lowers activation energy for both forward and reverse processes

* What happens if:

* $CO_{(g)}$ + 2 $H_{2(g)}$ \rightleftharpoons $CH_{3}OH_{(g)}$ + 35 kJ

* a) temperature is increased?

* b) pressure is increased?

* c) H_{2(g)} is added?

* d) a catalyst is introduced?

* What happens if:

* $CO_{(g)}$ + 2 H_{2(g)} \rightleftharpoons CH₃OH_(g) + 35 kJ

* a) temperature is increased? LEFT

* b) pressure is increased? **RIGHT**

* c) H_{2(g)} is added? RIGHT

* d) a catalyst is introduced? NOTHING

* What happens if

* NaCl(s) + 3.9 kJ \rightleftharpoons Na⁺(aq) + Cl⁻(aq)

* a) temperature is increased?

* b) pressure is increased?

* What happens if

* NaCl(s) + 3.9 kJ \rightleftharpoons Na⁺(aq) + Cl⁻(aq)

* a) temperature is increased? **RIGHT**

* b) pressure is increased? NO CHANGE

