SCH 4U: Exam Review

Unit 1: Structure and Property of Atoms

Concepts

- What are the four quantum numbers needed to describe the location of an electron
- What I value is associate with each orbital shape?
- · What are the allowed values for each?
- Electron Configurations
- Describe the atomic trend for: atomic radius, ionic radius, electronegativity, electron affinity, ionization energy.
- Name each of the secondary structures of VSEPR notation
- Briefly outline intramolecular vs intermolecular forces. How do you know when you have a covalent bond, a polar covalent bond, and an ionic bond?
- · List the five types of crystalline solids and the properties associated with each

Skills

- Fill out electron diagram, full electron configurations and condensed electron configurations of any given atom
- Draw Lewis diagrams for a given molecule (included co-ordinate covalent bonds, polyatomic atoms, expanded valency and incomplete valency)
- Describe VSPER notation and draw molecules with correct molecular shape

Practice Questions

Sketch the molecular structure of each of the following and give their name and VSEPR notation.

SF5⁻¹ BeF2 BCl3 PBr5 Nl3

State the electron configuration of the following atoms:

Pd

Se

Sr

Which of the following quantum numbers feature pairs that are not allowed. Justify.

n=3	 =3	ml= -3	m _s = -0.5

n=5	=2	ml= -3	ms=0.5

n=1 l=0 ml=0 $m_s=1$

Draw a Lewis structure for the following atoms:

NH4 ¹⁺

NO₃-

Unit 2: Organic Chemistry

Concepts

- Define saturated hydrocarbon, unsaturated hydrocarbon, and aromatic hydrocarbon.
- · Be able to name and draw
 - Straight chain alkanes, branched alkanes, cycloalkanes, alkenes, alkynes, and aromatics
- · Know the general formulas for alkanes, alkenes, and alkynes
- Know the structure of benzene
- Be able to predict which will have a higher boiling point
- Be able to name and draw
 - Alcohols, Haloalkanes, Ketones, Aldehydes, Carboxylic Acids, Esters, Ethers, Amines, and Amides
- Know the functional groups for: Alcohols, Haloalkanes, Ketones, Aldehydes, Carboxylic Acids, Esters, Ethers, Amines, and Amides
- Organic Reactions
 - Be able to identify and predict the products of addition, elimination, esterification, and substitution reactions
 - Know the terms halogenation and hydrogenation

Skills

- Draw and name various hydrocarbons and hydrocarbon derivatives.
- Identify the types of and products of organic reactions.

Practice Questions

Name each of the following organic compounds:

$$\begin{array}{c} O\\ II\\ CH_3 - CH_2 - CH_2 - CH_2 - C - O - CH_2 - CH_2 - CH_3\\ CH_3\\ I\\ CH_3 - CH = CH - CH_2 - CH_3\\ I\\ CH_2CH_3\\ \end{array}$$

CH₃ - O - CH₂ - CH₂ - CH₂ - CH₂ - CH₃

Ο

SCH 4U J. Kropac

$$\begin{array}{cccc} OH & CH_{3} \\ I & I \\ CH_{3} - CH - CH - CH_{2} - CH - CH_{2} - CH_{2} - CH_{2} - CH_{3} \\ I \\ OH \\ \end{array}$$

$$\begin{array}{c} F \\ I \\ CH_{3} - CH - CH - CH_{3} \\ I \\ F \end{array}$$

Draw the condensed structure for the following organic compounds:

2,2,3,4-tetramethylhept-3-ene		1,2,3-trimethylbenzene
2-methyl-3-phenylpentane		N-propylpentanamide
1,2-diethylbenzene		2,3-diethylpentanoic acid
propyl	4,5-dimethylhexanoate	nonan-2-amine

For each of the following identify both the type of reaction and products

 $\begin{array}{cccc} CH_3 \ CH_3 & O \\ I & I & II \end{array}$ $CH_3 - CH_2 - CH - CH - C - OH + OH - CH_2 - CH_2 - CH_3 \rightarrow \end{array}$

 $CH_3 - CH_2 - CH_3 + Cl_2 \rightarrow$

 $\begin{array}{c} \mathsf{CH}_3\\ \mathsf{I}\\ \mathsf{CH}_3 \mathsf{-} \mathsf{CH} = \mathsf{CH} \mathsf{-} \mathsf{CH}_2 \mathsf{-} \mathsf{CH}_2 \mathsf{-} \mathsf{CH}_3 \quad + \quad \mathsf{H}_2 \ \rightarrow \end{array}$

 $\begin{array}{c} CH_3 \\ I \\ CH_3 - CH = C - CH_3 + HBr \rightarrow \end{array}$

Unit 3: Energy Changes and Rates of Reaction

Concepts

- Exothermic vs Endothermic reactions. Where does the energy travel to and from? What Q values are associated with each?
- What is the difference between a thermochemical equation and a potential energy diagram? Be able to draw both.
- What is meant by the term molar enthalpy?
- Describe collision theory. Know the difference between an effective vs ineffective collision.
- What is meant by the term rate determining step? How would you determine what the rate determining step is?
- Know the Symbol and Units for: Specific Heat Capacity, Heat, Molar Enthalpy, Enthalpy of a system (reaction)

Skills

- Determine the heat added to or released from a system (Q) using mass, specific heat capacity, and temperature change.
- Use calorimetry to calculate the molar enthalpy of a substance.
- Use a variety of equations and Hess's law to determine the enthalpy of a reaction.
- Use enthalpy of formation data to determine the enthalpy of a reaction.
- Sketch thermochemical equations and draw potential energy diagrams.

Practice Questions:

When a 100 g sample of ethanol at 25.0°C absorbs 6.10 kJ of energy, it's temperature increases to 50.0°C. What is the specific heat capacity of ethanol?

Use Hess's Law to determine riangle H for the following reaction:

 $4CO_{(g)} + 8H_{2(g)} \rightarrow 3CH_{4(g)} + CO_{2(g)} + 2H_2O_{(l)}$ You have been provided with the following equations:

$C_{(s)} + 2H_{2(g)} \rightarrow CH_{4(g)}$	∆H=-74.8 kJ
$\mathrm{CO}_{(\mathrm{g})} + 1/2\mathrm{O}_{2(\mathrm{g})} \rightarrow \mathrm{CO}_{2(\mathrm{g})}$	∆H = -283.1 kJ
$H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2O_{(g)}$	riangleH = -241.8 kJ
$C_{(s)} + 1/2 O_{2(g)} \rightarrow CO_{(g)}$	riangleH = -110.5 kJ
$H_2O_{(l)} + \rightarrow H_2O_{(g)}$	\triangle H= + 44.0 kJ

Use the standard enthalpy of formation data to determine the standard enthalpy for the reaction below. Note the enthalpy of formation of $CIF_{3(g)}$ is -157.87 kJ/mol.

 $2\mathsf{CIF}_{3(g)}+2\mathsf{NH}_{3(g)} \rightarrow \mathsf{N}_{2(g)}+6\mathsf{HF}_{(g)}+\mathsf{CI}_{2(g)}$

In a calorimeter, 3.86 g of sodium bromide is dissolved into 2800 mL of water. The initial temperature of the water was 22° C and the final temperature was 42.8° C. Based on this information, what would you expect the \triangle H_{sol} of sodium bromide to be? Provide your answer in kJ/mol.

There is 500 kJ of energy given off when 50 g of carbon monoxide gas, $CO_{(g)}$, is formed. Determine the enthalpy of formation, \triangle H_f, of carbon monoxide. Give your answer in

kJ/mol. (5 marks)

Unit 4: Chemical Systems at Equilibrium

Concepts

- What happens to a systems in equilibriums when: The concentration of reactants is increased, the concentration of products is increased, the concentration of reactant is decreased, temperature is increased, temperature is decreased, a catalyst is added, pressure is increased, volume is increased.
- What is reaction quotient? How can it help you determine the direction of the reaction?
- What does K_a stand for and how does it relate to the strength of an acid. Kb?
- What is titration? What are the products of titration always going to be?
- Describe how to identify the equivalence point.

Skills

- Be able to write a Keq expressions
- Calculate K_{eq} using a variety of methods (initial concentration, partial pressures, ICE table)
- Calculate pH using pOH or concentration of hydrogen
- Calculate K_a and K_b using pH and initial concentration

Sample Calculations:

Based on the following reaction:

 $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$

What would happen if: temperature increased, oxygen increased, pressure increased, a catalyst was introduced.

 $\begin{array}{ccc} \mbox{Write the solubility product formation expression for the following:} \\ \mbox{Ca(NO_3)_2} & \mbox{AlCl}_3 & \mbox{Ag}_3 PO_4 \end{array}$

In a 10 L flask, 0.8 mols of $N_{2(g)}$, 3.1 moles of $3H_2$ is present, and 9.2 moles of $NH_{3(g)}$ was recorded. Calculate K_{eq} for this reaction.

$$N_{2\,(g)} + 3H_{2\,(g)} \rightleftharpoons 2NH_{3\,(g)}$$

In a 8 L flask, 2 mols of $Br_{2(g)}$ and 2 moles of $Cl_{2(g)}$ was recorded. If K_{eq} =1.1 x 10⁻², what is the concentration of $2BrCl_{(g)}$ at equilibrium?

 $Br_{2(g)} + CI_{2(g)} \rightleftharpoons 2BrCI_{(g)}$

Propanoic acid is a weak acid. Calculate the pH of a 1.38 M solution of propanic acid, which has a Ka value of 1.3×10^{-3} . The ionization of propanic acid is below.

 $CH_3CH_2COOH \rightleftharpoons CH_3CH_2COO^- + H_3O^+$

Unit 5: Electrochemistry

Concepts

- Define oxidizing and reducing agent
- Describe a galvanic cell. In what directions do electrons flow?

Skills

- Be able to identify oxidizing and reducing agents.
- Be able to balance redox reactions.