

Esters

- A ester is a hydrocarbon derivative that contains a carbon that has a double bonded oxygen as well and a single bonded oxygen.
- Here the functional groups is sandwiched between two carbon chains.
- The carbon containing the functional group is said to have an ester linkage.

IUPAC Names

9 C- ____ yl nonanoate 5C- ____ yl <u>pentan</u>oate 4C- yl butanoate 10 C- yl decanoate The general formula for the series is R - C

Drawing Esters

the double bonded oxygen. Draw the

number of carbons as indicated by the

prefix.

oxygen.

chain as indicated.

4) Add any indicated side chains.

Saturated the remaining carbons

Naming Esters 1) Start by drawing the base chain attached to 1) Identify the base number of carbons. • The base is the longest continuous chain of carbons that is linked to the double bonded oxygen. 2) Add any additional side chains to the base • Use the number of carbons as a prefix before the suffix -oate. 3) Add the R' group to the single bonded 2) Since the double bonded O is always at the end, it's location doesn't have to be provided.

- The carbon that contains the carboxyl group is always carbon 1.
- Name any additional side chains off the base chain.

4) The chain of carbons off the **single bonded** oxygen(R') is named as a side chain according to the number of carbons it contains followed by -yl.

Example: ethyl 2-methylhexanoate Example: 0 0 Ш Answer: CH₃ CH₂ CH₂ CH₂ CH₂ C - O Ш CH₃ CH₂ CH₂ CH₂ CH C - O CH₂ CH₂ CH₂ CH₃ Answer: butyl hexanoate CH₃ CH₂ CH₃