Esters

- 1)Identify the number of carbons.
- 2) Use the appropriate IUPAC prefix with the ending _____.
- 1)Draw the number of _____
 identified by the IUPAC prefix. Attach
 them each by a _____ bond.

 2) _____ each carbon using

EXAMPLES

Name:

CH₃ - CH₂ - CH₃

CH₃ - CH₂ - CH₂ - CH₂ - CH₂ - CH₃

EXAMPLES

Draw:

pentane

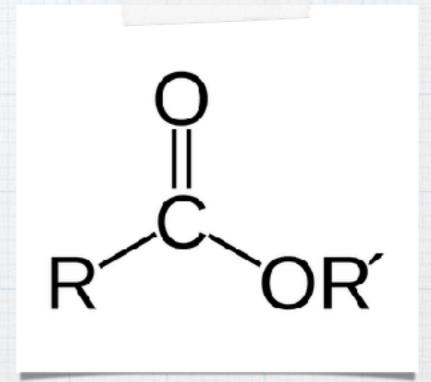
octane

- Alkanes are characterized by a _____ carbon-carbon bond.
- Alkanes are _____ and contained no double or triple bonds.
- Alkanes always end with '________'

* Fill in the Blanks Here

1) Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending	1)Draw the number of identified by the IUPAC prefix. Attach them each by a bond. 2) each carbon using a
EXAMPLES	Examples
	i !
Name: CH ₃ - CH ₂ - CH ₃	Draw: pentane

Alkanes are characterized by a _____ carbon-carbon bond.


and contained no double or triple bonds.

Alkanes are _____

Alkanes always end with '_

Esters

- * Esters are characterized by a double bonded and single bonded oxygen.
- * The ending is always 'OATE'.

* Fill in the Blanks Here

1) Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending	1)Draw the number of identified by the IUPAC prefix. Attach them each by a bond. 2) each carbon using a
EXAMPLES	Examples
Name: CH ₃ - CH ₂ - CH ₃	Draw: pentane

Alkanes are characterized by a _____ carbon-carbon bond.

CH3 - CH2 - CH2 - CH2 - CH3

Alkanes are ___

Alkanes always end with '_

octane

_____ and contained no double or triple bonds.

Naming Esters

- * Identify the number of carbons.
- * Identify the main chain (most carbons).
 This will have the ending OATE.
- * Identify the secondary chain (least carbons). This will be named as a side chain and have a space.
- * Name any additional side chains with the same numbering system.

Examples

CH3 - CH2 - CH2 - CH2 - C - O - CH2 - CH3

CH₃ 0

CH3 - CH - CH2 - C - O - CH2 - CH2 - CH3

Examples

CH3 - CH2 - CH2 - CH2 - C - O - CH2 - CH3

Ethyl pentanoate

CH₃ (

Propyl 3-methylbutanoate

CH3 - CH - CH2 - C - O - CH2 - CH2 - CH3

* Fill in the Blanks Here

1) Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending	1)Draw the number of identified by the IUPAC prefix. Attach them each by a bond. 2) each carbon using a
	:

EXAMPLES

Name:

 $\mathsf{CH}_3 \mathsf{-} \mathsf{CH}_2 \mathsf{-} \mathsf{CH}_3 \mathsf{-} \mathsf{CH}_3$

CH3 - CH2 - CH2 - CH2 - CH2 - CH3

EXAMPLES

Draw:

pentane

octane

- Alkanes are characterized by a _____ carbon-carbon bond.
- Alkanes are _____ and contained no double or triple bonds.
- Alkanes always end with '________'

Prawing Esters

- * Draw the number of carbons identified by the IUPAC prefix.
- * Praw a single bonded and double bonded oxygen off the main chain.
- * Attach the secondary chain to the single bonded oxygen.
- * Add any additional side chains.

Examples methyl octanoate

ethyl 2-ethylhexanoate

EXAMPles Butanal

CH - CH₂ - CH₂ - CH₃
II
0

2-ethyloctanal

CH - CH2 - CH2 - CH2 - CH2 - CH2 - CH3
II I
O CH2 - CH3

Examples ethan-1-ol

CH3 - CH2
I
OH

4-ethylheptan-2-ol

CH3 - CH - CH2 - CH - CH2 - CH3 - CH3 - CH3 - CH2 - CH3 - CH2 - CH3