

Systems in Equilibrium:

* In constant motion (Dynamic)

* Reversible

- * Constant (Forward and reverse reactions occur at equal rates)
- ALWAYS in a closed system, which means that matter cannot enter or leave the system

* There are several types of equilibria:

- * Solubility Equilibria
- * Phase Equilibria
- * Chemical Reaction Equilibria

Solubility Equilibrium

- * Reached when the concentration of the dissolved solute is constant
- * must contain both dissolved and undissolved solute at the same time
- * rate of dissolving = rate of crystallization

* CaSO_{4(s)}
$$\rightleftharpoons$$
 Ca²⁺(aq) + SO₄²⁻(aq)

Phase Equilibrium

* Evaporation/condensation equilibrium

* at equilibrium, the pressure of gas remains constant

* Solid/liquid equilibrium

* established at the melting/freezing point

$H_2 O_{(s)} \rightleftharpoons H_2 O_{(l)}$

Chemical Reaction Equilibrium

- * Quantitative reactions: when a chemical reaction proceeds to completion (in an open system)
 - * an equilibrium can be reach in a closed system

Example

 $N_2O_{4(g)}$ + heat \Rightarrow $2NO_{2(g)}$

* an equilibrium will have the same composition whether approached from reactants or pure products

Law of Chemical Equilibrium

* Law of Chemical Equilibrium: In a chemical system, there is a constant ratio between concentrations of products and reactants.

Equilibrium Constant

 Equilibrium Constant (K_{eq}): is the ratio of equilibrium concentrations for a particular chemical system at a particular temperature

For the reaction $aA + bB \rightleftharpoons cC + dD$

Where [A], [B], [C], and [D] represent the relative concentrations of products and reactants and the exponents a, b, c, d represent the stoichiometric coefficients

The numerical value of K_{eq} tells you the relative concentrations of products and reactants, and what is being favored.

- * If Keq > 1, products are favored
- * If K_{eq} < 1, reactants are favored

* If K_{eq} = 1, products and reactants equally favored

* Write the equilibrium law expression for the following reaction.

* $N_{2(g)}$ + $3H_{2(g)}$ \Rightarrow $2NH_{3(g)}$

* Given: $N_{2(g)}$ + $3H_{2(g)}$ \Rightarrow $2NH_{3(g)}$

* Homogeneous equilibria: all the reactants and products are in the same phase.

* Heterogeneous equilibria: more than one phase exists in a reaction mixture

Rules for Writing Keq

- * Solids NEVER appear in equilibrium expressions.
- * Liquids and solvents NEVER appear in equilibrium expressions.
 - * The concentration of a pure liquid or solid is unchangeable. Therefore they are CONSTANT.

* Write the equilibrium law expression for the following reaction.

* $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

* Given: $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

* Given: $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

* Given: $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

$K= \frac{[Ca0][C0_2]}{[CaC0_3]}$

 $[CO_2]$ Keq=

