Standard Enthalpies of Formation

* The standard enthalpy of formation is the quantity of energy associated with the formation of one mole of a substance from its elements in their standard states (at SATP)

Unit: kJ/mol

Calculating ΔH_f

- * According to Hess's Law, the enthalpies of known equations may be used to calculate the enthalpy of an unknown reaction.
 - * $H_2O_{(g)}$ + $C_{(s)}$ \rightarrow $H_2(g)$ + $CO_{(g)}$ $\Delta H = ?$
- * Use the formation equations for each of the products and reactants to create the target equation.

* $H_2O_{(g)}$ + $C_{(s)}$ \rightarrow $H_{2(g)}$ + $CO_{(g)}$ $\Delta H = ?$

* Consider:

* $H_{2(g)}$ + 1/2 $O_{2(g)} \rightarrow H_2O_{(g)} \Delta H_f(H_2O) = -241.8 \text{kJ/mol}$

* $C_{(s)}$ + 1/2 $O_{2(g)} \rightarrow CO_{(g)} \Delta H_{f}(CO) = -110.5 kJ/mol$

Equation 1

H₂O (g) + C (s) \rightarrow H₂ (g) + CO (g)

 $H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2O_{(g)} \Delta H_f(H_2O) = -241.8 \text{kJ/mol}$

* H₂O on wrong side, reverse and change sign on \bigtriangleup H

 $H_2O_{(g)} \rightarrow H_{2(g)} + 1/2 O_{2(g)} \Delta H_f(H_2O) = -1(-241.8)kJ/mol$

Equation 1

Equation 2

* H₂O on wrong side, reverse and change sign on \triangle * Coefficients

* Coefficients and sides match, riangle H stays the same

 $H_2O_{(g)} \rightarrow H_{2(g)} + 1/2 O_{2(g)} \quad \Delta H_f(H_2O) = -1(-241.8)kJ/mol \quad C_{(s)} + 1/2 O_{2(g)} \rightarrow CO_{(g)} \quad \Delta H_f(CO) = -110.5kJ/mol$

Equation 1

Equation 2

* H₂O on wrong side, reverse and change sign on \triangle + Coefficients and sides match, \triangle H stays the same

 $H_2O_{(g)} \rightarrow H_{2(g)} + 1/2 O_{2(g)} \quad \Delta H_f(H_2O) = -1(-241.8)kJ/mol \quad C_{(s)} + 1/2 O_{2(g)} \rightarrow CO_{(g)} \quad \Delta H_f(CO) = -110.5kJ/mol$

Combine Equations

 $\begin{array}{rl} H_2 O_{(g)} \rightarrow H_{2(g)} + 1/2 O_{2(g)} & \Delta H_f(H_2 O) = -1(-241.8) k J/mol \\ C_{(s)} + 1/2 O_{2(g)} \rightarrow CO_{(g)} & \Delta H_f(CO) = -110.5 k J/mol \end{array}$

 $\label{eq:H2O} \begin{array}{l} \text{H}_2\text{O} \ \text{(g)} \mbox{+} \mbox{C} \ \text{(s)} \mbox{-} \mbox{H}_2 \ \text{(g)} \mbox{+} \mbox{CO} \ \text{(g)} \mbox{-} \mbox{\Delta} \mbox{H}_f \mbox{=} \mbox{131.3 kJ} \end{array}$

Using Hess's Law

* When all enthalpies of formation are known, the enthalpy of a reaction is equal to the sum of the enthalpies of formation of the products minus the sum of the enthalpies of formation of the reactants.

 $\Delta H_{rxn} = \Sigma n \Delta H_f (products) - \Sigma n \Delta H_f (reactants)$

n = the amount in moles of each product or reactant

* Calculate the heat of combustion of methanol.

$CH_3OH_{(1)} + 3/2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \Delta H^{\circ}comb = ?$

All atoms in their standard states have $H_f = 0$

Solution

* $\Delta H_{rxn} = \Sigma n \Delta H_f (products) - \Sigma n \Delta H_f (reactants)$

 $CH_3OH_{(1)} + 3/2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)} \Delta H^{\circ}comb = ?$

 $\Delta H_{rxn} = \begin{bmatrix} (1)(CO_2) + (2)(H_2O) 1 - \begin{bmatrix} (1)(CH_3OH) + (3/2)(O_2) 1 \\ \Delta H_{rxn} = \begin{bmatrix} (1)(-393.5) + (2)(-241.8) 1 - \begin{bmatrix} (1)(-239.2) + (3/2)(0) 1 \\ \Delta H_{rxn} = \begin{bmatrix} -877.1 1 - \begin{bmatrix} -239.2 1 \\ \Delta H_{rxn} = -637.9 \text{ kJ} \end{bmatrix} \land H_{cO2} = 0 \text{ kJ}$ $\Delta H_{cO2} = -393.5 \text{ kJ}$ $\Delta H_{rxn} = -637.9 \text{ kJ}$

The \triangle H_{comb} is -637.9 kJ.

* Pg 323 #51-56 * Pg 324 # 1,4,6,11