Empirical Gas Laws

J. KROPAC

Factors that Affect Gases

* Pressure
* the amount of force exerted on a gas
* Temperature
* Volume
* the amount of space that object takes up

Boyle's Law

$P_{1} V_{1}=F_{2} V_{2}$

* Assuming constant temperature

Example

* A 1.5 L tank is filled with compressed air at pressure 20 atm . If the tank is emptied, what volume of gas would be released at ambient pressure 0.92 atm ?

Solution

* Given:

* $P_{1}=20 \mathrm{~atm}$
* $P_{2}=0.92 \mathrm{~atm}$
* $V_{1}=1.51$
* $V_{2}=$?

Solution

$P_{1} V_{1}=P_{2} V_{2}$
$(20 \mathrm{~atm})(1.5 \mathrm{~L})=(0.92 \mathrm{~atm})\left(\mathrm{V}_{2}\right)$
$(20 \mathrm{~atm})(1.5 \mathrm{~L})=V_{2}$
0.92 atm
$V_{2}=33 \mathrm{~L}$

There will be 331. of gas released.

Charle's Law

$\mathrm{T}_{1} \mathrm{~V}_{2}=\mathrm{T}_{2} \mathrm{~V}_{1}$

* Assuming constant pressure

Example

* A balloon at a birthday party is 2.5 L. If the house is 22 C and then taken outside where it is $-25 C$, how large will the balloon be?

Solution

* Given:

$$
\begin{aligned}
& * T_{1}=22 C \\
& * T_{2}=-25 C \\
& * V_{1}=1.51 \\
& * V_{2}=?
\end{aligned}
$$

Solution

* Given:

$$
\begin{aligned}
& * T_{1}=22 C \\
& * T_{2}=-25 C \\
& * V_{1}=1.51 \\
& * V_{2}=?
\end{aligned}
$$

Solution

* Given:

$$
\begin{aligned}
& * T_{1}=22 C+273=295 K \\
& * T_{2}=-25 C+273=248 \\
& * V_{1}=2.5 L \\
& * V_{2}=?
\end{aligned}
$$

Solution

$T_{1} V_{2}=T_{2} V_{1}$
$(295 \mathrm{~K})\left(V_{2}\right)=(248 \mathrm{~K})(2.5 \mathrm{~L})$
$(248 \mathrm{~K})(2.5 \mathrm{~L})=\mathrm{V}_{2}$
295 K
$V_{2}=2.1 \mathrm{~L}$

There balloon will have a volume of 2.5 L .

Gay Lussac's Law

$T_{1} P_{2}=1 p_{2} p_{1}$

* Assuming constant volume

Example

* A sealed pot is placed on a stove. It's temperature is raised from 21 C to 113 C. What is the pressure inside the pot at 1.1 atm ?

Solution

* Given:

$$
\begin{aligned}
& * P_{1}=1.1 \mathrm{~atm} \\
& * P_{2}=? \\
& * T_{1}=21 \mathrm{C} \\
& * T_{2}=113 \mathrm{C}
\end{aligned}
$$

Solution

* Given:

$$
\begin{aligned}
& * P_{1}=1.1 \mathrm{~atm} \\
& * P_{2}=? \\
& * T_{1}=21 C+273=294 \\
& * T_{2}=113 C+273=386
\end{aligned}
$$

Solution

$T_{1} P_{2}=T_{2} P_{1}$

$(294 \mathrm{~K})\left(\mathrm{P}_{2}\right)=(386 \mathrm{~K})(1.1 \mathrm{~atm})$

$(386 \mathrm{~K})(1.1 \mathrm{~atm})=\mathrm{V}_{2}$
386 K
$\mathrm{V}_{2}=1.4 \mathrm{~atm}$

The inside of the pot has a pressure of 1.4 atm.

