Empirical Gas Laws

J. KROPAC

Factors that Affect Gases

- * Pressure
 - * the amount of force exerted on a gas
- * Temperature
- * Volume

Up

* the amount of space that object takes

$P_1V_1 = P_2V_2$

* Assuming constant temperature

* A 1.5 L tank is filled with compressed air at pressure 20 atm. If the tank is emptied, what volume of gas would be released at ambient pressure 0.92 atm?

$P_1V_1 = P_2V_2$ (20 atm)(1.5L) = (0.92 atm) (V₂)

 $(20 \text{ atm})(1.5 \text{ L}) = V_2$ 0.92 atm

V2= 33L

There will be 33L of gas released.

$\mathbf{T}_1 \mathbf{V}_2 = \mathbf{T}_2 \mathbf{V}_1$

* Assuming constant pressure

* A balloon at a birthday party is 2.5L. If the house is 22 C and then taken outside where it is -25 C, how large will the balloon be?

* T2= -25 C

* V2=?

 $T_{k} = T_{c} + 273$

***** T₁= 22 C + 273 = 295 K

$T_{1}V_{2}=T_{2}V_{1}$ (295 K)(V_{2}) = (248 K) (2.5 L) (248 K) (2.5 L) = V_{2} 295 K V_{2} = 2.1 L There b

There balloon will have a volume of 2.5L.

Gay Lussac's Law

 $T_1P_2=T_2P_1$

A sealed pot is placed on a stove. It's temperature is raised from 21 C to 113 C. What is the pressure inside the pot at 1.1 atm?

* T₂= 113 C

* $P_1 = 1.1$ atm

$* T_1 = 21 C + 273 = 294$

 $T_2 = 113C + 273 = 386$

$T_1P_2=T_2P_1$ $(294 \text{ K})(P_2) = (386 \text{ K})(1.1 \text{ atm})$ $(386 \text{ K})(1.1 \text{ atm}) = V_2$ 386 K The inside of the pot $V_2 = 1.4 atm$ has a pressure of 1.4 atm.