Petermining Chemical Formula

J KROPAC

Empirical Formula

- * The empirical formula is the simplest formula of a compound.
- * It tells us the relative number of atoms in a compound.
- * It does not tell us how many atoms of each type are in the molecule of the compound.

- * Step 1: List Given Values
- * Step 2: Calculate Mass(m) of Each Element in a 100g sample
- * Step 3: Convert mass (m) into Amount (n)
 - * n= m / M
- * Step 4: State Amount Ratio
- * Step 5: Calculate the Lowest Whole-Number

* A certain compound contains 5.9 % hydrogen and 94.1% oxygen. Determine the empirical formula of the compound.

Element	Mass in 100 g sample	Amount (n) n=m/M	Ratio
Hydrogen	5.9 g	n= <u>5.9 g</u> 1 g/mol n= 5.9 mol	5.9/5.9 =1
Oxygen	94.1 g	n= <u>94.1 g</u> 16 g/mol n= 5.9	5.9/5.9 =1

- * Therefore the empirical formula of this compound is HO
- * **If the ratio ends up with .5, then multiply all be 2 to get whole numbers

* Petermine the empirical formula for a compound that contains 69.88% iron and 30.12% oxygen.

Element	Mass in 100 g sample	Amount (n) n=m/M	Ratio
Iron	69.88 g	n= 69.88 g 55.85 g/mol n= 1.2512 mol	1.2512/1.2512
Oxygen	30.12 g	n= <u>30.12 g</u> 16.00 g/mol n= 1.882 mol	1.882/1.2312 =0.5

- * Therefore the empirical formula would be FeO_{0.5}
 - * However you cannot have decimals, so you must find the closest whole number ratio
 - * Fe₂0

Finding Whole Number Ratios

- * If you have a whole number ratio of:
 - * HO_{0.5}
 - * AIC10.33
 - * Blo.667

Finding Whole Number Ratios

- * If you have a whole number ratio of:
 - * HO_{0.5} x2 H₂O
 - * Alo.33Cl x3 AlCl3
 - * B0.6670 X3 B203

Molecular Formula

- * The molecular formula shows the actual number of atoms of each element in a molecule or compound.
- * There is a direct relationship between the empirical and molecular formula.
 - * Eg. The empirical formula for glucose is CH₂O and the molecular formula is C₆H₁₂O₆

Steps to Vetermine Molecular Formula

- * Step 1: Use the Steps to Petermine the Empirical Formula If Not Given
- * Step 2: List Given Values
- * Step 3: Determine Molar Mass of Empirical Formula
- * Step 4: Petermine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula.
- * Step 5: Calculate Molecular Formula

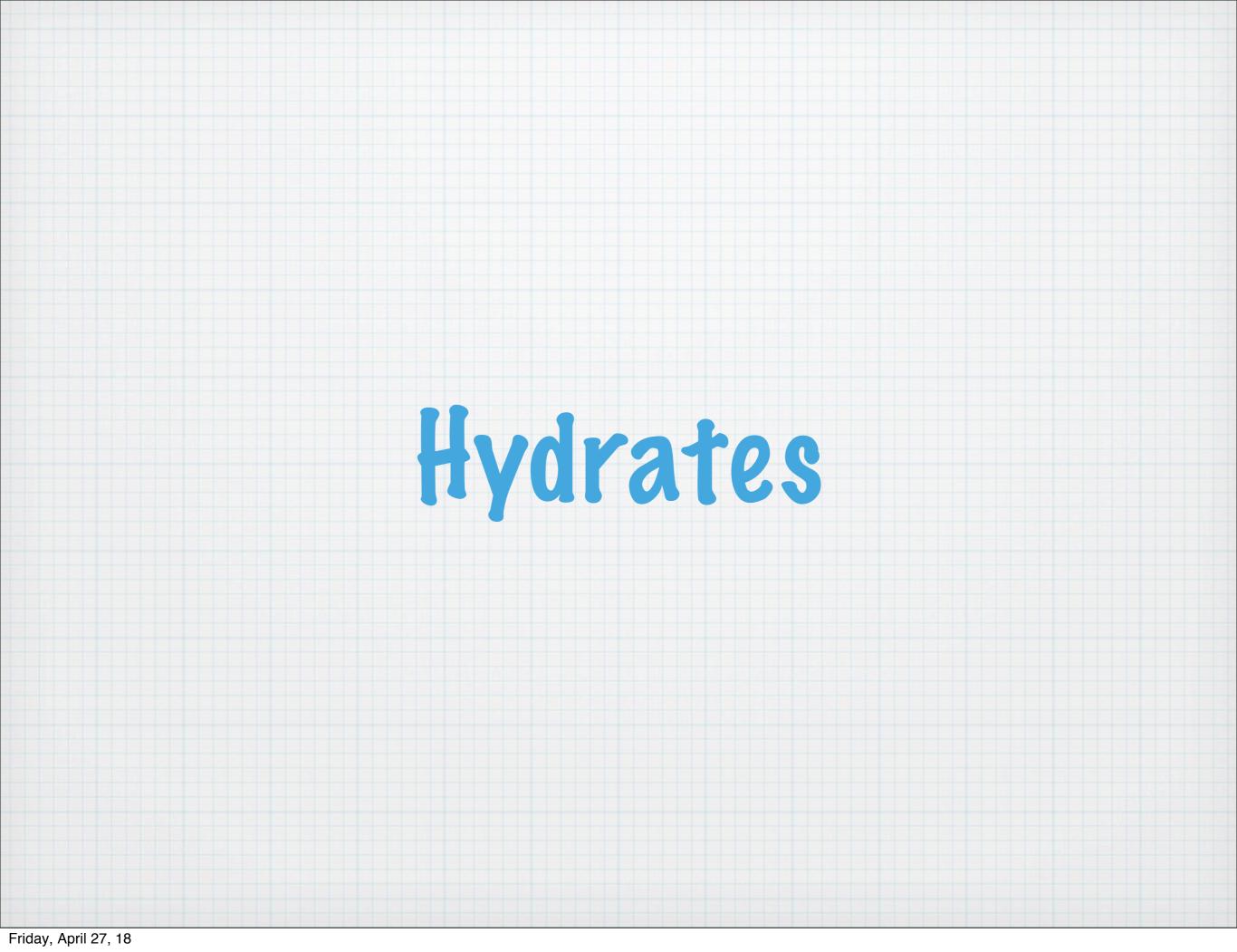
* The empirical formula of a compound is HCO₂. If the compound has a molecular mass of 90 g/mol, determine it's molecular formula.

- * Step 1: Empirical formula is HCO₂.
- * Step 2:
 - * Given: Empirical Formula HCO2
 - * Given: M = 90.0 g/mol

* Step 3: Petermine the Molar Mass of the empirical formula

* HCO2:

$$*H = 1 \times 1.0 g = 1 g$$


$$* C = 1 \times 12.0 g = 12 g$$

$$*0=2x16g=32g$$

* Step 4: Petermine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula

* Step 5: Calculate the Molecular Formula

Molecular Formula = 2(empirical formula) = $2 \times HCO_2$ = $C_2H_2O_4$

Hydrates

* A hydrate is a compound wit a specific number of water molecules bound to each formula unit.

* Example: CaSO₄•2H₂O_(s)

Hydrates

- * Compounds in an ionic state can be hydrates (with water) or anhydrous (without water).
- * While the water doesn't interfere with chemical activity, they do change the mass.