Elements vs Compounds

Atoms

* Atom: The basic unit of a chemical element.

Element

* An element is a pure substance that cannot be broken down into a simpler substance by physical or chemical means.
* Elements are listed on the periodic table.
* Example: Carbon, Sodium, Chlorine

Elements

* We represent the elements with elemental symbols
* the first letter is capitalized
* if there is a second letter, it is lower case
* Example: Carbon $=C$, Sodium $=\mathrm{Na}$, Chlorine = Cl

Elements

* Elements are the building blocks of all substances
* Elements combine in certain ratios to form compounds

Compounds

* A compound is a pure substance composed of two or more elements that are chemically joined in fixed proportions

Compounds

* Can be broken down into simpler substances
* Example: Water is made of Hydrogen (H) and Oxygen (O). It's chemical formula is $\mathrm{H}_{2} \mathrm{O}$. If an electric current ran through water, the elements would separate into hydrogen gas (H_{2}) and oxygen $\left(\mathrm{O}_{2}\right)$

* Is it an element or a compound?

Interpreting Compounds

* A chemical formula uses symbols and numerals to represent the composition of a pure substance (or compound)

Symbol for the element: Hydrogen

Symbol for the element: Oxygen

Number means the number of hydrogen atoms

No number means there is only one oxygen atom

(2)

$$
\mathrm{CaCO}_{3}
$$

Interpreting Compounds

* Law of definite proportions states that a chemical compound always contains exactly the same proportion of elements by mass.

Interpreting Compounds

* According to the law of Definitive Proportions water must always contain two atoms of hydrogen for every one atom of oxygen.
* Based on this, each water molecule contains 3 atoms.

