Measuring Distances in Space

Astronomical Unit (AU)

- * Measuring distances in KM in space is not practical, so the astronomical unit(AU) was created.
- * 1 AU = the average distance between the Sun and the Earth, approximately 150 million km.
 - * For example mercury is 0.39 AU from the Sun while Mars is 1.52 AU from the Sun

Outside of our solar system, AUs become impractical to use so the Light Year (ly) was developed.

 * 1 ly = the distance a beam of light can travel in one year. It is the equivalent of 63 000 AU or 9000 billion KM.

Models of Planetary Motion

Geocentric Model

More than 2000 years ago thought that the Earth was the centre of the universe.

Heliocentric Model

 Heliocentric model is a Sun-centered model that was revived by Copernicus.

Heliocentric Model

* Two key pieces of support

* i) Orbital Radius: each planet orbits the sun at a different <u>orbital radius</u>.

* The shorter the orbital radius, the faster a planet moves in its orbit.

Heliocentric Model

- * Two key pieces of support
 - * i) Elliptical Orbits
 - * Kepler noted that orbits are ellipses not circles. This observation made it easier to predict planetary motions.

* Complete page 350 # 1-6