Measuring Distances

 in Space
Astronomical Unit (AU)

* Measuring distances in KM in space is not practical, so the astronomical unit(AU) was created.
* $1 \mathrm{AU}=$ the average distance between the Sun and the Earth, approximately 150 million km .
* For example mercury is 0.39 AU from the Sun while Mars is 1.52 AU from the Sun

Light Years

* Outside of our solar system, AUs become impractical to use so the Light Year (ly) was developed.
* 1 ly = the distance a beam of light can travel in one year. It is the equivalent of 63000 AV or 9000 billion KM.

Models of Planetary Motion

Geocentric Model

* More than 2000 years ago thought that the Earth was the centre of the universe.

Heliocentric Model

* Heliocentric model is a Sun-centered model that was revived by Copernicus.

Heliocentric Model

* Two key pieces of support
* i) Orbital Radius: each planet orbits the sun at a different orbital radius.
* The shorter the orbital radius, the faster a planet moves in its orbit.

Heliocentric Model

* Two key pieces of support

* i) Elliptical Orbits

* Kepler noted that orbits are ellipses not circles. This observation made it easier to predict planetary motions.

* Complete page 350 \# 1-6

