Dilutions

Dilutions

* If you begin with a solution of known concentration (called a stock solution), you can prepare a solution of lower concentration by dilution.
* You can calculate this concentration by using the following dilution equation:
* $C_{i} V_{i}=C_{f} V_{f}$
* You can calculate this concentration by using the following dilution equation:

$$
\text { * } C_{i} V_{i}=C_{f} V_{f}
$$

Ci is the concentration of the initial solution Vi is the volume of the initial solution
Cf is the concentration of the final solution Vf is the volume of the final solution

Example

* Calculate the final concentration of a hydrogen peroxide solution if water is added to 100 mL of $6 \mathrm{~mol} / \mathrm{L}$ peroxide until the total volume is 200 mL .

Solution

* $C_{i} V_{i}=C_{f} V_{f}$
* Given
* $C_{i}=6 \mathrm{~mol} / \mathrm{L}$
* $V_{f}=200 \mathrm{~mL}$

Solution

C. $\mathrm{C}=\mathrm{F}_{\mathrm{C}}^{\mathrm{C}} \mathrm{F}_{\mathrm{t}}$
$(6 \mathrm{~mol} / \mathrm{L})(100 \mathrm{~mL})=C_{f}(200 \mathrm{~mL})$

Solution

C. $\mathrm{V}_{\mathrm{i}} \mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{t}}$
$(6 \mathrm{~mol} / \mathrm{L})(100 \mathrm{~mL})=C_{f}(200 \mathrm{~mL})$
$C_{f}=(6 \times 100) /(200)$
$C_{f}=3 \mathrm{~mol} / \mathrm{L}$

Solution

$C_{i} \mathrm{~V}_{\mathrm{F}}=\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{t}}$
$(6 \mathrm{~mol} / \mathrm{L})(100 \mathrm{~mL})=C_{f}(200 \mathrm{~mL})$
$C_{f}=(6 \times 100) /(200)$
$C_{f}=3 \mathrm{~mol} / \mathrm{L}$
Therefore the final concentration will be $3 \mathrm{~mol} / \mathrm{l}$.

