Vetermining Chemical Formula

Empirical Formula

- * The empirical formula is the simplest formula of a compound.
- Tells us the relative number of atoms, does not tell us how many atoms of each type.
 - * eg. The empirical formula of glucose is CH2O (The real formula is C6H12O6)

Steps Used to Petermine Empirical Formula

- * Step 1: Calculate Mass(m) of Each Element in a 100g sample
- * Step 2: Convert mass (m) into Amount (n)
 - * n = m / M
- * Step 3: State Amount Ratio
- * Step 4: Calculate the Lowest Whole-Number Amount Ratio

* A certain compound contains 5.9 % hydrogen and 94.1% oxygen. Determine the empirical formula of the compound.

Element	Mass in Sample	
Hydrogen	5.9	
Oxygen	94.1	

Element	Mass in Sample	Moles n=m/M	
Hydrogen	5.9	n=5.9/1 n=5.9	
Oxygen	94.1	n=94.1/16 n= 5.9	

Element	Mass in Sample	Moles n=m/M	Ratio
Hydrogen	5.9	n=5.9/1 n=5.9	5.9/5.9=1
Oxygen	94.1	n=94.1/16 n= 5.9	5.9/5.9 =1

* Therefore the empirical formula of this compound is HO

* ** If the ratio ends up with .5, then multiply all be 2 to get whole numbers

* A certain compound contains 11.2 % hydrogen and 88.8% oxygen. Determine the empirical formula of the compound.

Element	Mass in Sample	
Hydrogen	11.2	
Oxygen	88.8	

Element	Mass in Sample	Moles n=m/M	
Hydrogen	11.2	n=11.2/1 n=11.2	
Oxygen	88.8	n=88.8/16 n= 5.55	

Element	Mass in Sample	Moles n=m/M	Ratio
Hydrogen	11.2	n=11.2/1 n=11.2	11.2/5.55 =2
Oxygen	88.8	n=88.8/16 n= 5.55	5.55/5.55 =1

* Therefore the empirical formula of this compound is H₂O

Molecular Formula Determination

Molecular Formula

* The molecular formula show the actual number of atoms of each element in a molecule or compound.

Steps to Vetermine Molecular Formula

* Step 1: Use the Steps to Determine the Empirical Formula If Not Given

* Step 2: Determine Molar Mass of Empirical Formula

* Step 3: Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula.

* Step 4: Calculate Molecular Formula

The empirical formula of a compound is HCO₂. If the compound has a molecular mass of 90 g/mol, determine it's molecular formula.

* Given: Empirical Formula HCO₂

* Given: M = 90.0 g/mol

* Step 2: Determine the Molar Mass of the empirical formula

* HCO2: * H = 1 x 1.0 g = 1 g * C= 1 x 12.0 g = 12 g * 0 = 2 x 16 g = 32 g * =45.0g/mol

* Step 3: Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula

* = 90 / 45|

* Step 4: Calculate the Molecular Formula

* Molecular Formula = 2(empirical formula)

* 2 x HCO₂

* C2H2O4

* The analysis of a compound shows that it is made up of 21.9 % Na, 45.7 % C, 1.9% H and 30.5% 0

* What is the molecular formula of a compound if its molecular mass is 210.0g/mol?

Element	Mass in Sample	
Sodium	21.9	
Carbon	45.7	
Hydrogen	1.9	
Oxygen	30.5	

Element	Mass in Sample	Moles	
Sodium	21.9	21.9/23 =0.952	
Carbon	45.7	45.7/12 =3.81	
Hydrogen	1.9	1.9/1 =1.9	
Oxygen	30.5	30.5/16.0 =1.91	

Element	Mass in Sample	Moles	Ratio
Sodium	21.9	21.9/23 =0.952	0.952/0.952 =1
Carbon	45.7	45.7/12 =3.81	3.81/0.952 =4
Hydrogen	1.9	1.9/1 =1.9	1.9/0.952 =2
Oxygen	30.5	30.5/16.0 =1.91	1.91/0.952 =2

Element	Mass in Sample	Moles	Ratio
Sodium	21.9	21.9/23 =0.952	0.952/0.952 =1
Carbon	45.7	45.7/12 =3.81	3.81/0.952 =4
Hydrogen	1.9	1.9/1 =1.9	1.9/0.952 =2
Oxygen	30.5	30.5/16.0 =1.91	1.91/0.952 =2

Empirical Formula = NaC₄H₂O₂

* Determine Molar Mass of Empirical Formula

* NaC4H2O2

- * Na= 1 x 23.0g = 23 g
- * C = 4 x 12.0 g = 48 g
- * H = 2 x 1.0 g = 2 g
- * 0 = 2 x 16 g = 32 g

* 105.0 g/mol

- * Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula
 - * Mcompound/ MNaC4H202
 - * =210.0 g/mol / 105.0 g/mol
 - * =2

* Calculate Molecular Formula

- * Molecular Formula = 2 (empirical formula)
- * =2(NaC₄H₂O₂)
- $* = Na_2C_8H_4O_4$