Determining Chemical Formula

Empirical Formula

* The empirical formula is the simplest formula of a compound.
* Tells us the relative number of atoms, does not tell us how many atoms of each type.
* eg. The empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$ (The real formula is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)

Steps Used to Determine Empirical Formula

* Step 1: Calculate Mass(m) of Each Element in a 100 g sample
* Step 2: Convert mass (m) into Amount (n)
* $n=m / M$
* Step 3: State Amount Ratio
* Step 4: Calculate the Lowest Whole-Number Amount Ratio

Example

* A certain compound contains 5.9 \% hydrogen and 94.1% oxygen. Determine the empirical formula of the compound.

Example

* Consider 100 g of the compound

Element	Mass in Sample		
Hydrogen	5.9		
Oxygen	94.1		

Example

* Consider 100 g of the compound

Element	Mass in Sample	Moles $n=m / M$	
Hydrogen	5.9	$n=5.9 / 1$ $n=5.9$	
Oxygen	94.1	$n=94.1 / 16$ $n=5.9$	

Example

* Consider 100 g of the compound

Element	Mass in Sample	Moles $n=m / M$	Ratio
Hydrogen	5.9	$n=5.9 / 1$ $n=5.9$	$5.9 / 5.9=1$
Oxygen	94.1	$n=94.1 / 16$ $n=5.9$	$5.9 / 5.9=1$

Example

* Therefore the empirical formula of this
compound is HO
* **If the ratio ends up with .5 , then multiply all be 2 to get whole numbers

Example

* A certain compound contains 11.2% hydrogen and 88.8% oxygen. Determine the empirical formula of the compound.

Example

* Consider 100 g of the compound

Element	Mass in Sample		
Hydrogen	11.2		
Oxygen	88.8		

Example

* Consider 100 g of the compound

Element	Mass in Sample	Moles $n=m / M$	
Hydrogen	11.2	$n=11.2 / 1$ $n=11.2$	
Oxygen	88.8	$n=88.8 / 16$ $n=5.55$	

Example

* Consider 100 g of the compound

Element	Mass in Sample	Moles $n=m / M$	Ratio
Hydrogen	11.2	$n=11.2 / 1$ $n=11.2$	$11.2 / 5.55$ $=2$
Oxygen	88.8	$n=88.8 / 16$ $n=5.55$	$5.55 / 5.55$ $=1$

Example

* Therefore the empirical formula of this compound is $\mathrm{H}_{2} \mathrm{O}$

Molecular Formula Determination

Molecular Formula

* The molecular formula show the actual number of atoms of each element in a molecule or compound.

Steps to Determine Molecular Formula

* Step 1: Use the Steps to Determine the Empirical Formula If Not Given
* Step 2: Determine Molar Mass of Empirical Formula
* Step 3: Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula.
* Step 4: Calculate Molecular Formula

Example

* The empirical formula of a compound is HCO_{2}. If the compound has a molecular mass of $90 \mathrm{~g} /$ mol, determine it's molecular formula.

Example

* Step 1:

* Given: Empirical Formula HCO_{2}

* Given: $M=90.0 \mathrm{~g} / \mathrm{mol}$

Example

* Step 2: Determine the Molar Mass of the empirical formula
* HCO_{2} :

$$
\begin{aligned}
& * H=1 \times 1.0 \mathrm{~g}=1 \mathrm{~g} \\
& \text { * } C=1 \times 12.0 \mathrm{~g}=12 \mathrm{~g} \\
& * O=2 \times 16 \mathrm{~g}=32 \mathrm{~g} \\
& *=45.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Example

* Step 3: Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula
* Mcompound / M He02

$$
*=90 / 451
$$

* $=2$

Example

* Step 4: Calculate the Molecular Formula
* Molecular Formula = 2lempirical formula)
* $2 \times \mathrm{HCO}_{2}$
* $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$

Example

* The analysis of a compound shows that it is made up of $21.9 \% \mathrm{Na}, 45.7 \% \mathrm{C}, 1.9 \% \mathrm{H}$ and $30.5 \% 0$
* What is the molecular formula of a compound if its molecular mass is $210.0 \mathrm{~g} / \mathrm{mol}$?

Example

Example

Element	Mass in Sample	Moles
Sodium	21.9	$\begin{aligned} & 21.9 / 223 \\ & =0.952 \end{aligned}$
Carbon	45.7	$\begin{gathered} 45.7 / 122 \\ =3.81 \end{gathered}$
Hydrogen	1.9	$\begin{aligned} & 1.9 / 1 \\ & =1.9 \end{aligned}$
Oxygen	30.5	$\begin{gathered} 30.5 / 16.0 \\ =1.91 \end{gathered}$

Example

Element	Mass in Sample	Moles	Ratio
Sodium	21.9	$\begin{aligned} & 21.9 / 23 \\ & =0.952 \end{aligned}$	$\begin{gathered} 0.952 / 0.952 \\ =1 \end{gathered}$
Garbon	45.7	$\begin{gathered} 45.7 / 12 \\ =3.81 \end{gathered}$	$\begin{aligned} & 3.81 / 0.952 \\ & =4 \end{aligned}$
Hydrogen	1.9	$\begin{aligned} & 1.9 / 1 \\ & =1.9 \end{aligned}$	$\begin{gathered} 1.9 / 0.952 \\ =2 \end{gathered}$
Oxygen	30.5	$\begin{gathered} 30.5 / 16.0 \\ =1.91 \end{gathered}$	$1.91 / 0.952$

Example

Element	Mass in Sample	Moles	Ratio
Sodium	21.9	$\begin{aligned} & 21.9 / 223 \\ & =0.952 \end{aligned}$	$\begin{gathered} 0.952 / 0.952 \\ =1 \end{gathered}$
Garbon	45.7	$\begin{gathered} 45.7 / 122 \\ =3.81 \end{gathered}$	$\begin{aligned} & 3.81 / 0.952 \\ & =4 \end{aligned}$
Hydrogen	1.9	$\begin{aligned} & 1.9 / 1 \\ & =1.9 \end{aligned}$	$\begin{aligned} & 1.9 / 0.952 \\ & =2 \end{aligned}$
Oxygen	30.5	$\begin{gathered} 30.5 / 16.0 \\ =1.91 \end{gathered}$	$\begin{gathered} 1.91 / 0.952 \\ =2 \end{gathered}$

Empirical Formula $=\mathrm{NaCl}_{4} \mathrm{H}_{2} \mathrm{O}_{2}$

Example

* Determine Molar Mass of Empirical Formula
- $\mathrm{NaC}_{4} \mathrm{H}_{2} \mathrm{O}_{2}$

$$
\begin{aligned}
& \text { * } \mathrm{Na}=1 \times 23.0 \mathrm{~g}=23 \mathrm{~g} \\
& \text { * } \mathrm{C}=4 \times 12.0 \mathrm{~g}=48 \mathrm{~g} \\
& \text { * } H=2 \times 1.0 \mathrm{~g}=2 \mathrm{~g} \\
& \text { * } 0=2 \times 16 \mathrm{~g}=32 \mathrm{~g} \\
& \text { * } 105.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Example

* Determine Ratio of Molar Mass of Compound to Molar Mass of Empirical Formula
* Mcompound/ Mnac4H202
* $=210.0 \mathrm{~g} / \mathrm{mol} / 105.0 \mathrm{~g} / \mathrm{mol}$
* $=2$

Example

* Calculate Molecular Formula

* Molecular Formula = 2 (empirical formula)

* $=2\left(\mathrm{NaC}_{4} \mathrm{H}_{2} \mathrm{O}_{2}\right)$
* $=\mathrm{Na}_{2} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$

