Decomposition Reactions

Decomposition reaction: A chemical reaction in which a compound breaks down into elements or simpler compounds.

Binary Compound Decomposition into Elements

- A binary compound will usually break into its elements.
- Electrolysis is the process that uses electrical energy to cause a chemical reaction, and is often used in decomposition reactions.

Example: Electrolysis of molten sodium chloride

- Heat can also be used to decompose an compound into its elements. This process is called thermal decomposition.

Example: Decomposition of mercury (II) oxide

Decomposition of a Metal Nitrate

- Compounds that are composed of two elements do generally not decompose into single elements.
- Metal nitrates decompose to a metal nitrite and oxygen gas.

Example: Thermal decomposition of sodium nitrate

Decomposition of a Metal Carbonate

- Metal carbonates are always going to decompose to carbon dioxide gas and a solid metal oxide.

Example: Decomposition of calcium carbonate

Decomposition of a Metal Chlorate

- Metal chlorates are always going to decompose into oxygen gas and an ionic compound including chlorine.

Example: Decomposition of sodium chlorate

Decomposition of Metal Hydroxides

-When heated, a metal hydroxide will generally form a metal oxide and water.

Example: Decomposition of calcium hydroxide

Homework: p. 134 \#31-40

21) Lithium + Oxygen

$$
2 \mathrm{Li}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}->\mathrm{Li}_{2} \mathrm{O}_{(\mathrm{s})}
$$

22) Strontium + Fluorine

$$
\mathrm{Sr}_{(\mathrm{s})}+\mathrm{F}_{2(\mathrm{~g})}->\mathrm{SrF}_{2(\mathrm{~s})}
$$

23) Iron + Bromine
$\mathrm{Fe}_{(\mathrm{s})}+\mathrm{Br}_{2}{ }_{(\mathrm{l})}->\mathrm{FeBr}_{2(\mathrm{~s})}$
$2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{l})->2 \mathrm{FeBr}_{3}(\mathrm{~s})$
24) Phosphorous + Hydrogen, gaseous phosphorous trihydride

$$
2 \mathrm{P}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})}->2 \mathrm{PH}_{3(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

25) Calcium + lodine
$\mathrm{Ca}(\mathrm{s})+\mathrm{I}_{2(\mathrm{~g})}->\mathrm{Cal}_{2(\mathrm{~s})}$
26) Tin + Oxygen
$2 \mathrm{Sn}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}->2 \mathrm{SnO}_{(\mathrm{s})}$
$\mathrm{Sn}(\mathrm{s})+\mathrm{O}_{2(\mathrm{~g})}->\mathrm{SnO}_{2}(\mathrm{~s})$
27) Bismuth + Sulfur
$2 \mathrm{Bi}_{\text {(s) }}+3 \mathrm{~S}_{\text {(s) }}->\mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s})$
2 Bi (s) $+5 \mathrm{~S}_{\text {(s) }}->\mathrm{Bi}_{2} \mathrm{~S}_{5}(\mathrm{~s})$
28) Aluminum + lodine
$2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{I}_{2(\mathrm{~g})}->2 \mathrm{All}_{3(\mathrm{~s})}$
29) Silver + Oxygen
$4 \mathrm{Ag}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g})->2 \mathrm{Ag}_{2} \mathrm{O}_{(\mathrm{s})}$
30) Nitrogen + Oxygen, Nitrogen Dioxide

$$
\mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}->2 \mathrm{NO}_{2 \mathrm{~s})}
$$

