

* Concentration is more expressed as the molar concentration (C).

* Molar concentration is the amount of solute, in moles, that is dissolved in one litre of solution.

Concentration: amount of solute (n)

volume of solution (L)

- * C= Concentrations (mol/L or M)
- * n= # of moles (mol)
- * L= Volume (L)

OR

C = n/V

* A NaOH solution contains 0.186 mol of NaOH in 250mL of solution. Calculate the concentration.

n = 0.186 mol

Given: n = 0.186 mol

Volume always has to be in L. To convert to L, divide by 1000.

n = 0.186 mol

V = 250 mL / 1000 = .250 L

n = 0.186 mol

V = 250 mL / 1000 = .250 L

* A solution is prepared by dissolving 1.68g of copper (II) sulfate, CuSO_{4(s)}, in 150 mL pf water. Calculate the concentration of the copper (II) sulphate solution. The molar mass of copper (II) sulfate is 159.6 g/mol.

V = 150mL

V = 150mL / 1000 = .150L

V = 150mL / 1000 = .150L

m = 1.68g

The unit of concentration in mol/L, must convert to mol.

C=0.0700 mol/L

NH_{3(aq)} has a molar concentration of 14.8 mol/L. How many moles of ammonia is present in a 1.50 L bottle?

* What volume of a 5.0 mol/L glucose solution C₆H₁₂O₆ contains 2.5 mol of glucose?

