Concentration

* Concentration is more expressed as the molar concentration (C).
* Molar concentration is the amount of solute, in moles, that is dissolved in one litre of solution.

volume of solution (L)

* C= Concentrations (mol/L or M)
* $n=$ \# of moles (mol)
* L = Volume (L)

Example

* A NaOH solution contains 0.186 mol of NaOH in 250 mL of solution. Calculate the concentration.

Solution

Given:

$n=0.186 \mathrm{~mol}$
$V=250 \mathrm{~mL}$

Solution

Given:

$n=0.186 \mathrm{~mol}$
$V=250 \mathrm{~mL}$

> Volume always has to be in L. To convert to L, divide by 1000.

Solution

Given:

$n=0.186 \mathrm{~mol}$
$V=250 \mathrm{~mL} / 1000=.250 \mathrm{~L}$

Solution

Given:

$n=0.186 \mathrm{~mol}$
$V=250 \mathrm{~mL} / 1000=.250 \mathrm{~L}$

* $C=n / V$

Solution

Given:

$n=0.186 \mathrm{~mol}$
$V=250 \mathrm{~mL} / 1000=.250 \mathrm{~L}$

* $C=n / V$
$C=0.186 \mathrm{~mol} / 250 \mathrm{~L}$
Therefore he concentration is $0.744 \mathrm{~mol} / \mathrm{L}$ or M
$C=0.744 \mathrm{~mol} / \mathrm{L}$

Example

* A solution is prepared by dissolving 1.68 g of copper (II) sulfate, CuSO $4(3)$, in 150 mL pf water. Calculate the concentration of the copper (II) sulphate solution. The molar mass of copper (II) sulfate is 159.6 $\mathrm{g} / \mathrm{mol}$.

Solution

Given:

$V=150 \mathrm{~mL}$
$m=1.68 \mathrm{~g}$

Solution

Given:

$V=150 \mathrm{~mL} / 1000=.150 \mathrm{~L}$ $m=1.68 \mathrm{~g}$

Solution

Given:

$$
\begin{aligned}
& V=150 \mathrm{~mL} / 1000=.150 \mathrm{~L} \\
& m=1.68 \mathrm{~g}
\end{aligned}
$$

Solution

$n=m / M$

Given:
$m=1.68 \mathrm{~g}$
$M=159.6 \mathrm{~g} / \mathrm{mol}$

Solution

$n=m / M$

Given:
$m=1.68 \mathrm{~g}$
$M=159.6 \mathrm{~g} / \mathrm{mol}$
$n=1.68 / 159.6$
$n==0.0105 \mathrm{~mol} \mathrm{CuSO}_{4}$

Solution

$C=n / v$
Given
$n=0.015 \mathrm{~mol}$
$V=0.150!$

Solution

$C=n / v$

Given
$n=0.015 \mathrm{~mol}$
$V=0.150 \mathrm{~L}$
$C=0.0105 \mathrm{~mol} / 0.150 \mathrm{~L}$
$C=0.0700 \mathrm{~mol} / \mathrm{L}$

Solution

$C=n / v$

Given

$n=0.015 \mathrm{~mol}$
$V=0.150 \mathrm{~L}$
$C=0.0105 \mathrm{~mol} / 0.150 \mathrm{~L}$
$\mathrm{C}=0.0700 \mathrm{~mol} / \mathrm{L}$
Therefore the concentration in 0.0700 $\mathrm{mol} / \mathrm{L}$ or M

Example

* $\mathrm{NH}_{3 \text { laq }}$ has a molar concentration of 14.8 $\mathrm{mol} / \mathrm{L}$. How many moles of ammonia is present in a 1.50 L bottle?

Solution

Given
$C=14.8 \mathrm{~mol} / \mathrm{L}$
$V=1.5 \mathrm{~L}$

Solution

Given

$C=14.8 \mathrm{~mol} / \mathrm{L}$
 $V=1.5 \mathrm{~L}$

$n=C \times V$

Solution

Given

$\mathrm{C}=14.8 \mathrm{~mol} / \mathrm{L}$ $V=1.5$ L

$n=C \times V$
$n=14.8 \times 1.5$
$n=22.2 \mathrm{~mol}$

Solution

Given

$C=14.8 \mathrm{~mol} / \mathrm{L}$ $V=1.5 \mathrm{~L}$

$n=C \times V$
$n=14.8 \times 1.5$
$n=22.2 \mathrm{~mol}$

Therefore there are 22.2 mol of NH_{3}.

Example

* What volume of a $5.0 \mathrm{~mol} / \mathrm{L}$ glucose solution $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ contains 2.5 mol of glucose?

Solution

Given

$C=5.0 \mathrm{~mol} / \mathrm{L}$ $n=2.5 \mathrm{~mol}$

 $V=n / C$
Solution

Given

$C=5.0 \mathrm{~mol} / \mathrm{L}$ $\mathrm{n}=2.5 \mathrm{~mol}$
$V=n / C$
$V=2.5 / 5.0$
$V=0.500 \mathrm{~L}$

Solution

Given

$C=5.0 \mathrm{~mol} / \mathrm{L}$ $n=2.5 \mathrm{~mol}$

$V=n / C$
$V=2.5 / 5.0$
$V=0.500 \mathrm{~L}$

Therefore there is 0.500 L of solution.

