Circulatory Systems

Circulatory Systems

* All animals have:

* circulatory fluid = "blood"

* tubes = blood vessels

* muscular pump = heart

Closed Circuit Cardiovascular System

* <u>atrium</u> = receive blood

* ventricle = pump blood out

* The <u>wall</u> separating the left and right sides of your heart is known as the <u>septum</u>.

* Each side has a <u>thin</u> walled <u>atrium</u> to collect blood above a more <u>muscular</u> ventricle that <u>pumps</u> blood.

Between the different regions of the heart are valves to ensure blood only flows in one direction.

Mammalian Heart

Vertebrate cardiovascular system

* Blood vessels

* arteries = carry blood away from heart, arterioles

* veins = return blood to heart

* <u>capillaries</u> = point of gas exchange

Arteries: Built for high pressure

Arteries carry blood away from the heart and have thicker walls to withstand the greater pressure of blood.

Veins: Built for low pressure flow

* Thinner walled and wider

* Have valves

* In larger veins oneway valves allow blood to flow only toward heart

Capillaries: Built for exchange

* Only endothelium

* Enhances exchange across capillary

Two Systems in One

* The left and right side of your heart do <u>different</u> functions.

* The right side of your heart <u>pumps</u> blood to the lungs to exchange CO₂ for O₂ in the <u>pulmonary</u> circuit.

Two Systems in One

* The left side of your heart <u>pumps</u> oxygen <u>rich</u> blood around your body in the <u>systemic</u> circuit.

* Blood moving through the heart is the cardiac circuit.

Mammalian Circulation

Pulmonary Circuit Pulmonary circuit Systemic Circuit Oxygen rich, Oxygen poor, Systemic circuit CO2 - rich blood CO₂ - poor blood Capillary bed of all body tissues where gas exchange occurs

Mammalian Circulation

Heart Valves

* flaps of <u>connective</u> tissue

* prevent <u>backflow</u>

Heart Sounds

* The heart beat is actually controlled within the heart itself by two bundles of nerves.

Lub-dub, lub-dub

- * Heartbeat caused by closing of valves
- * "Lub": recoil of blood against closed <u>AV</u> valves
- * "Dub": recoil of blood against semilunar valves
- * Heart murmur

 defect in valves causes <u>hissing</u> sound when stream of blood squirts <u>backward</u> through valve

* 1 complete <u>sequence</u> of pumping

* heart contracts & pumps

* heart relaxes & chambers fill

* contraction phase

* systole: ventricles pumps blood out

* relaxation phase

* diastole: atria refill with blood

Components of Blood

* The average human has 5 litres of blood

* A transporting fluid that carries substances to all parts of the body

Components of Blood

* Plasma (55%) * Red blood cells (40 - 45%)* (5-6-million/ml) * White blood cells (1%) * Platelets

Plasma White Blood Cells and Platelets Red Blood Cells

* Liquid part of blood

Produce tiny fibrin threads that trap blood cells (scab).

Thrombrocytes

White Blood Cells

* The bodies defense, part of the immune system response

Leukocytes

Red Blood Cell

- Transport gasses (oxygen) to and from blood.
- * Contain iron to bind with oxygen.
- No nucleus to allow more O₂ to be carried

Erythrocytes