Current Electricity

An Introduction to Simple Circuits

Static Electricity vs Current Electricity		
Electricity	Definition	Characteristic
Static	Stationary buildup of electric charge on a substance	Electrons do not move along a path
Current	Electric charge that moves from a source of electrical energy along a controlled path in an electric current	Electrons move along a path

* Current Electricity: the controlled flow of electrons through a conductor. * Dry cell: A source of energy 1 cell 2 cells 3 cells * Battery: 2 or more conductors

* Circuits: A closed path for electrons

Parts of a simple circuit

* Parts of a simple circuit

* 1) Source: provides power (ie battery)

- * 2) Control: opens and closes the circuit (ie switch)
- * 3) Load: converts one type of energy (electrical) into another (sound, light, heat)

* 4) Conductor: allows electrical energy topass through it (ie. copper wire)

Operation of an Electric Circuit

* Closed circuit: circuit is operating and current is flowing and the switch is ON

* Open circuit: Circuit is not operating and the current in not flowing. Switch is OFF

Operation of an Electric Circuit

* The electric current flows in a continuous loop from the negative terminal of the cell, through the wires, the switch and the light bulb and returns to the positive terminal.

Electrical Current

* The amount of charge that passes a point in a conducting wire every second

* Represented by I

* Measured in amperes (coulomb/second)

* Measured using an ammeter

Electric Current

* I=current (measured in amperes)

* Q= charge moving past a point(measured in coulombs)

* t=time (measured in seconds)

Sample Calculation

* If 240 coulombs of charge pass a point in a wire in five minutes, what is the current thought that point in the wire?

* Q=240 C (Charge)

* t=5 min (time)

Sample Calculation

* First, time must always be in seconds

* t=5min

* t=5 min x 60 seconds = 300 seconds

Sample Calculation

* Required: I (current)

- * |= Q / t
- * I= 240 C/ 300 sec
- * =0.80 A

* Therefore 0.80A will move through that point in the conductor.