Alcohols

Foldable Instructions

* Cut Here

1)Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending \qquad	1)Draw the number of \qquad identified by the IUPAC prefix. Attach them each by a \qquad bond. 2) \qquad each carbon using a \qquad .
EXAMPLES Name: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	EXAMPLES Draw: pentane octane
- Alkanes are characterized by a \qquad - Alkanes are \qquad an - Alkanes always end with ' \qquad	\qquad carbon-carbon bond. contained no double or triple bonds.

Foldable Instructions

* Fill in the Blanks Here

Carboxylic Acids

* Carboxylic acids are characterized by a carboxyl group.
* Carboxylic acids always end with 'OIC ACID'

Foldable Instructions

* Fill in the Blanks Here

1)Identify the number of carbons. 2) Use the appropriate IUPAC prefix with the ending \qquad	1)Draw the number of \qquad identified by the IUPAC prefix. Attach them each by a \qquad bond. 2) \qquad each carbon using a \qquad
EXAMPLES Name: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	ExAMPLES Draw: pentane octane
- Alkanes are characterized by a \qquad - Alkanes are \qquad an - Alkanes always end with ' \qquad	\qquad carbon-carbon bond. contained no double or triple bonds.

Naming Carboxylic Acids

* Identify the number of carbons.
* Use the appropriate IUPAC prefix with the ending OIC ACID.
* Locate the carboxyl group. This will always be carbon 1 .
* Name any additional side chains with the same numbering system.

Examples

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}
$$

I
OH

$$
\begin{array}{cc}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} & =0 \\
\mathrm{I} & \mathrm{I} \\
\mathrm{CH}_{3} & \mathrm{OH}
\end{array}
$$

Examples $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$

I

Butanoic acid

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}
$$

I
CH_{3}
OH
4-methylhexanoic acid

Foldable Instructions

* Fill in the Blanks Here

Drawing Carboxylic Acids

* Draw the number of carbons identified by the IUPAC prefix. Attach them each by a single bond.
* Draw the carboxyl as identified.
* Add any additional side chains.
* Saturate each carbon using a hydrogen.

Examples octanoic acid

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}$

 OH

2,3-dimethylpentanoic acid

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}-\mathrm{C}=\mathrm{O} \\
\mathrm{CH}+\mathrm{CH}_{3} \mathrm{OH}
\end{gathered}
$$

Examples ethan-1-ol

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2} \\
\mathrm{OH}
\end{gathered}
$$

4-ethylheptan-2-0l

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{\mathrm{H}}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{H}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
\mathrm{O}_{2}
\end{gathered}
$$

