

Calculating Keq

- Pepending on the nature of the reaction and the quantitative information that is available, there are several ways to calculate K_{eq}
 - * Using Concentration
 - * Using Partial Pressure
 - * Using ICE Tables

Using Molar Concentration

* So if we can determine molar concentrations we can determine K_{eq}

* A 5.0 L flask contains N₂, chlorine, Cl₂, and nitrogen trichloride, NCl₃. The reaction at equilibrium can be represented as:

* $N_{2(g)}$ + $3Cl_{2(g)} \rightleftharpoons 2NCl_{3(g)}$

 When the system is analyzed, it contains 0.0070 mol of N₂, 0.0022mol of Cl₂, and 0.95 mol of NCl₃. Calculate the equilibrium constant for the reaction.

* First calculate the concentration of each product and reactant:

$[N_2] =$ $n = 0.0070 \text{ mol} = 1.4 \times 10^{-3} \text{ mol/L}$ V 5L

$\frac{[C]_{2}}{V} = \frac{n}{V} = \frac{0.0022 \text{ mol}}{5L} = \frac{4.4 \times 10^{-4} \text{ mol/L}}{5L}$

$\frac{[NCl_3] = n}{V} = \frac{0.95 \text{ mol}}{5L} = \frac{1.9 \times 10^{-1} \text{ mol/L}}{5L}$

5L

* Now write the equilibrium constant expression for the reaction

* Now substitute and solve

$K_{eq} = \frac{[1.9 \times 10^{-1}]^2}{[1.4 \times 10^{-3}][4.4 \times 10^{-4}]^3}$

$K_{eq} = 3.0 \times 10^{11}$

* N₂ and H₂ are mixed in a 3500 mL flask. The reaction can be represented below.

$* N_2 + 3H_2 \Rightarrow 2NH_3$

* At equilibrium 0.25 mol of NH₃ and 0.080 mol of H₂ were recorded. If the equilibrium constant for the reaction is K_{eq}=5.81 x 10⁵, what amount of nitrogen gas is present?

* First calculate the concentration of each product and reactant:

$[NH_3] = n = 0.25 \text{ mol} = 7.143 \times 10^{-2} \text{ mol/l}$ V 3.5L

$[H_2] = n = 0.080 \text{ mol} = 2.286 \times 10^{-2} \text{ mol/l}$ V 3.5L

$\frac{[NCl_3] = n}{V} = \frac{0.95 \text{ mol}}{5L} = \frac{1.9 \times 10^{-1} \text{ mol/L}}{5L}$

5L

* Now write the equilibrium constant expression for the reaction

$K_{eq} = \frac{[NH_3]^2}{[H_2]^3[N_2]}$

* Now substitute and solve

$\begin{bmatrix} N_2 \end{bmatrix} = \begin{bmatrix} NH_3 \end{bmatrix}^2 \\ \begin{bmatrix} H_2 \end{bmatrix}^3 \begin{bmatrix} K_{eq} \end{bmatrix}$

$\begin{bmatrix} N_2 \end{bmatrix} = \frac{(0.07143 \text{ mol/l})^2}{(0.02286 \text{ mol/l})^3(5.81 \times 10^5)}$

 $[N_2] = 74 \times 10^{-4} \text{ mol/L}$

* Now calculate the number of moles

n= C x V

n= (7.3512 x 10⁻⁴ mol/L)(3.5 L)

n= 2.6 x 10⁻³ mol

PV=nRT

* If we rearrange:

Since R and T are constant, we can use P in place of concentration

 $\frac{P}{RT} = \frac{n}{V}$

* The following reaction shows the production of CH₃Cl_(g)

* $CH_{4(g)}$ + $Cl_{2(g)}$ \Longrightarrow $CH_{3}Cl_{(g)}$ + $HCl_{(g)}$

* At 1500 K the mixture contains PcH4=0.13 atm, PcH3cl= 0.24 atm, and PHcl=0.47 atm. What is Keg?

* Find the Kp expression

Kp = PCH3CIPHCI PCH4PCI2

* Now substitute and solve

$K_P = (0.24)(0.47) = 24.79$ (0.13)(0.035)

Using ICE Tables

* A 2.0L flask has 0.200 mol of HI. HI then decomposes to H_{2(g)} and I_{2(g)} until it reaches equilibrium. At equilibrium the concentration of HI is 0.078 mol/L. What is K_{eq}?

Solution * Fill out an ICE table. Write a chemical equation and add know values.						
	2Hl(g) ≓	H2(g) +	I_2(g)			
Initial	[0.100 mol/L]	E01	[0]			
Change						
Equilibrium						

* Let x represent the change in concentration

	2HI (g) =	H2(g) +	2(g)	
Initial	[0.100 mol/L]	E01	[0]	
Change	-2x	+χ	+χ	
Equilibrium				

* Let x represent the change in concentration

		H 2(g) +	2(g)	
Initial	[0.100 mol/L]	[0]	[0]	
Change	-2x	+χ	+ <u>x</u>	
Equilibrium	0.100 - 2x	X	X	

* Use your equilibrium concentration to determine x.

The equilibrium concentration of HI is 0.078 mol/L.

Therefore

0.100 mol/L - 2x = 0.078 mol/L -2x = 0.078 mol/L -2x = 0.078 - 0.100 x = 0.011 mol/L

* Now we know the equilibrium concentrations of H₂ and I₂

211.

		π2(g) 4	12(g)
Initial	[0.100 mol/L]	E01	E01
Change	-2x	+χ	+х
Equilibrium	0.100 - 2x	X	X

LL . . .

* Now we know the equilibrium concentrations of H₂ and I₂

2ЦІ.

	ZΠI(g)	Π2(g) 4	12(g)
Initial	[0.100 mol/L]	[0]	[0]
Change	-2x	+χ	+χ
Equilibrium	0.078	0.011	0.011

LL . . .

* Now use the Keq expression to solve

The equilibrium constant for the following reaction is found to be 0.83. If you start with 1.0 mol of CO_(g) and 1.0 mol H₂O in a 5.0 L container, what concentration of each substance will be present in the container at equilibrium?

* $CO_{(g)}$ + $H_2O_{(g)}$ \rightleftharpoons $H_{2(g)}$ + $CO_{2(g)}$

* Calculate the initial concentration of each reactant in the container.

$\frac{[CO] = n}{V} = \frac{1.0 \text{ mol}}{5.0 \text{ L}} = 0.20 \text{ mol/L}$

$[H_20] = n = \frac{1.0 \text{ mol}}{V} = 0.20 \text{ mol/L}$ V 5.0 L

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

Initial	0.20	0.20	0	0	
Change	-X	-X	+χ	+χ	
Equilibrium	0.20 - x	0.20 -x	X	X	

* Now use the Keq expression to solve

 $K_{eq} = \frac{[H_2][CO_2]}{[CO][H_2O]}$ 0.83 = (x)(x) (0.20 - x)(0.20 - x) $0.83 = (x)^2$ $(0.20 - x)^2$

* Now use the Keq expression to solve

 $K_{eq} = \underbrace{[H_2][CO_2]}_{[CO][H_2O]}$ 0.83 = (x)(x) (0.20 - x)(0.20 - x) $\sqrt{0.83} = (x)^2$ $\sqrt{(0.20 - x)^2}$ (0.9110)(0.20 - x) = x 1.1822 - 0.9110x = x x = 0.095

Solution * Use the x value to determine final concentrations

Initial	0.20	0.20	0	0
Change	-X	-X	+χ	+χ
Equilibrium	0.20 - x	0.20 -x	X	X

Solution * Use the x value to determine final concentrations

Initial	0.20	0.20	0	0	
Change	-X	-X	+χ	+х	
Equilibrium	0.105	0.105	0.095	0.095	

* pg 444 # 31, 32 * pg 447 # 41, 42 * pg 451 # 51-53