Calculating Keq

Calculating Keq

* Depending on the nature of the reaction and the quantitative information that is available, there are several ways to calculate $\mathrm{K}_{\text {eq }}$
* Using Concentration
* Using Partial Pressure
* Using ICE Tables

Using Molar Concentration

* Remember:

$$
K_{e q}=\frac{[C]-[D] d}{[A][B]]^{d}}
$$

* So if we can determine molar concentrations we can determine $K_{\text {eq }}$

Example

* A 5.0 L flask contains N_{2}, chlorine, Cl_{2}, and nitrogen trichloride, NCl_{3}. The reaction at equilibrium can be represented as:

$$
* \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NCl}_{3(\mathrm{~g})}
$$

* When the system is analyzed, it contains 0.0070 mol of $\mathrm{N}_{2}, 0.0022$ mol of Cl_{2}, and 0.95 mol of NCl_{3}. Calculate the equilibrium constant for the reaction.

Solution

* First calculate the concentration of

 each product and reactant:$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]=\frac{n}{V}=\frac{0.0070 \mathrm{~mol}}{5 \mathrm{~L}}=1.4 \times 10^{-3} \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{Cl}_{2}\right]=\frac{n}{V}=\frac{0.0022 \mathrm{~mol}}{5 \mathrm{~L}}=4.4 \times 10^{-4} \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{NCl}_{3}\right]=} \\
& \underset{V}{n}=\frac{0.95 \mathrm{~mol}}{5 \mathrm{~L}}=1.9 \times 10^{-1} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Solution

* Now write the equilibrium constant expression for the reaction

$$
\mathrm{K}_{\text {eq }}=\frac{\left[\mathrm{NCl}_{3}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{ICl}_{2}\right]^{3}}
$$

Solution

* Now substitute and solve

$$
\begin{aligned}
& K_{\text {eq }}=\frac{\left[1.9 \times 10^{-1}\right]^{2}}{\left[1.4 \times 10^{-3}\right]\left[4.4 \times 10^{-4}\right]^{3}} \\
& K_{\text {eq }}=3.0 \times 10^{11}
\end{aligned}
$$

Example

* N_{2} and H_{2} are mixed in a 3500 mL flask. The reaction can be represented below.

$$
* \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

* At equilibrium 0.25 mol of NH_{3} and 0.080 mol of H_{2} were recorded. If the equilibrium constant for the reaction is $\mathrm{K}_{\text {eq }}=5.81 \times 10^{5}$, what amount of nitrogen gas is present?

Solution

* First calculate the concentration of

 each product and reactant:$$
\begin{aligned}
& {\left[\mathrm{NH}_{3}\right]=\frac{n}{\mathrm{~V}}=\frac{0.25 \mathrm{~mol}}{3.5 \mathrm{~L}}=7.143 \times 10^{-2} \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{H}_{2}\right]=\frac{n}{\mathrm{~V}}=\frac{0.080 \mathrm{~mol}}{3.5 \mathrm{~L}}=2.286 \times 10^{-2} \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{NCl}_{3}\right]=\frac{n}{\mathrm{~V}}=\frac{0.95 \mathrm{~mol}}{5 \mathrm{~L}}=1.9 \times 10^{-1} \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Solution

* Now write the equilibrium constant expression for the reaction

$$
K_{\text {eq }}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}
$$

Solution

* Now substitute and solve

$$
\left[\mathrm{N}_{2}\right]=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~K}_{\text {eq }}\right]}
$$

$\left[\mathrm{N}_{2}\right]=\quad(0.07143 \mathrm{~mol} / \mathrm{L})^{2}$
 $(0.02286 \mathrm{~mol} / \mathrm{L})^{3}\left(5.81 \times 10^{5}\right)$

$\left[\mathrm{N}_{2}\right]=7.4 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$

Solution

* Now calculate the number of moles

$$
\begin{aligned}
& n=C \times V \\
& n=\left(7.3512 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)(3.5 \mathrm{~L}) \\
& n=2.6 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

Using Partial Pressure

 * Remember:
$P V=n R T$

* If we rearrange:

$$
\frac{p}{R T}=\frac{n}{V}
$$

Since R and T are constant, we can use P in place of concentration

Example

* The following reaction shows the production of $\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
$* \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{Cl}_{(g)}+\mathrm{HCl}_{(g)}$
* At 1500 K the mixture contains
$P_{\text {CH4 }}=0.13 \mathrm{~atm}, P_{\text {CH3Cl }}=0.24 \mathrm{~atm}$, and $P_{\text {hel }}=0.47 \mathrm{~atm}$. What is $\mathrm{K}_{\text {eq }}$?

Solution

* Find the Kp expression

$$
K_{\mathrm{P}}=\frac{P_{\text {ch3el| }} P_{\text {Hel }}}{P_{\text {cht }} P_{C l 12}}
$$

Solution

* Now substitute and solve

$$
K_{p}=\frac{(0.24)(0.47)}{(0.13)(0.035)}=24.79
$$

Using ICE Tables

Initial			
Change			
Equilibrium			

Example

* A 2.0L flask has 0.200 mol of HI. HI then decomposes to $\mathrm{H}_{2(g)}$ and $\mathrm{I}_{2(g)}$ until it reaches equilibrium. At equilibrium the concentration of HI is $0.078 \mathrm{~mol} / \mathrm{L}$. What is Keq?

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

$$
2 H_{(g)} \rightleftharpoons \quad H_{2(g)}+\quad \mathrm{I}_{2(g)}
$$

Initial	$[0.100 \mathrm{~mol} / \mathrm{L}]$	$[0]$	$[0]$
Change			
Equilibrium			

Solution

* Let x represent the change in concentration

Initial	$[0.100 \mathrm{~mol} / \mathrm{L}]$	$[0]$	$[0]$
Change	$-2 x$	$+x$	$+x$
Equilibrium			

Solution

* Let x represent the change in concentration
$2 \mathrm{H}_{(g)} \rightleftharpoons \quad \mathrm{H}_{2(g)}+\quad \mathrm{I}_{2(g)}$

Initial	$[0.100 \mathrm{~mol} / \mathrm{L}]$	$[0]$	$[0]$
Change	$-2 x$	$+x$	$+x$
Equillbrium	$0.100-2 x$	x	x

Solution

* Use your equilibrium concentration to determine x.

The equilibrium concentration of HI is $0.078 \mathrm{~mol} / \mathrm{L}$.
Therefore
$0.100 \mathrm{~mol} / \mathrm{L}-2 x=0.078 \mathrm{~mol} / \mathrm{L}$
$-2 x=0.078-0.100$
$x=0.011 \mathrm{~mol} / \mathrm{L}$

Solution

* Now we know the equilibrium concentrations of H_{2} and I_{2}

$$
2 H_{(g)} \rightleftharpoons \quad H_{2(g)}+\quad \mathrm{I}_{2(g)}
$$

Initial	$[0.100 \mathrm{~mol} / \mathrm{L}]$	$[0]$	$[0]$
Change	$-2 x$	$+x$	$+x$
Equillbrium	$0.100-2 x$	x	x

Solution

* Now we know the equilibrium concentrations of H_{2} and I_{2}

$$
2 \mathrm{H}_{(g)} \rightleftharpoons \mathrm{H}_{2(g)}+\quad \mathrm{I}_{2(g)}
$$

Initial	$[0.100 \mathrm{~mol} / \mathrm{L}]$	$[01$	$[0]$
Change	$-2 x$	$+x$	$+x$
Equilibrium	0.078	0.011	0.011

Solution

* Now use the Keq expression to solve

$$
\begin{aligned}
& \mathrm{K}_{\text {eq }}=\frac{\left[\mathrm { H } _ { 2 } \left[\left[\mathrm{H}_{2}\right]\right.\right.}{[H 1]^{2}} \\
& \mathrm{~K}_{\text {eq }}=(0.011)(0.011) \\
& \left.(0.078)^{2}\right) \\
& \mathrm{K}_{\text {eq }}=0.020
\end{aligned}
$$

Example

* The equilibrium constant for the following reaction is found to be 0.83 . If you start with 1.0 mol of $\mathrm{CO}_{(\mathrm{g})}$ and 1.0 mol $\mathrm{H}_{2} \mathrm{O}$ in a 5.0 L container, what concentration of each substance will be present in the container at equilibrium?

$$
* \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Solution

* Calculate the initial concentration of each reactant in the container.

$$
\begin{aligned}
& {[C O]=\frac{n}{V}=\frac{1.0 \mathrm{~mol}}{5.0 \mathrm{~L}}=0.20 \mathrm{~mol} / \mathrm{L}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{n}{V}=\frac{1.0 \mathrm{~mol}}{5.0 \mathrm{~L}}=0.20 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Solution

* Fill out an ICE table. Write a chemical equation and add know values.

$$
\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Initial	0.20	0.20	0	0
Change	$-x$	$-x$	$+x$	$+x$
Equilhbrium	$0.20-x$	$0.20-x$	x	x

Solution

* Now use the Keq expression to solve

$$
\begin{aligned}
& \mathrm{K}_{\text {eq }}=\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right] \\
& {[\mathrm{COH[H} 2 \mathrm{H} 2]} \\
& 0.83=\frac{(x)(x)}{(0.20-x)(0.20-x)} \\
& 0.83=\frac{\left.(x)^{2}-x\right)}{(0.20-x)^{2}}
\end{aligned}
$$

Solution

* Now use the Keq expression to solve

$$
\begin{aligned}
& \mathrm{K}_{\text {eq }}=\frac{\left.\mathrm{LH}_{2}\right]\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& 0.83=\quad(x)(x) \\
& (0.20-x)(0.20-x) \\
& \sqrt{ } 0.83=\frac{(x)^{2}}{\sqrt{(0.20-x)^{2}}} \rightarrow 0.9110=\frac{(x)}{(0.20-x)} \\
& (0.9110)(0.20-x)=x \\
& 1.1822-0.9110 x=x
\end{aligned}
$$

Solution

* Use the x value to determine final concentrations

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Initial	0.20	0.20	0	0
Change	$-x$	$-x$	$+x$	$+x$
Equilibrium	$0.20-x$	$0.20-x$	x	x

Solution

* Use the x value to determine final concentrations

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Initial	0.20	0.20	0	0
Change	$-x$	$-x$	$+x$	$+x$
Equilibrium	0.105	0.105	0.095	0.095

Homework

* pg 444 \# 31, 32 * pg 447 \# 41, 42 * pg 451 \# 51-53

