Acid-Base Reactions

Terms to remember

* Neutralization: Acid + base → salt + water, a double displacement reaction

- * Titration: An lab technique to determine the concentration, adding an acid to a base
- * Equivalence point: the point at which the reaction is complete (Same moles of each)

Titration Curve

- * Titration curve: a graph of the pH of an acid (or base) against the volume of an added base (or acid)
- * Equivalence point is equal to the midpoint on the titration curve.

Steps to Solve Strong Acid/Base

- * Petermine moles of each and which substance will remain.
- * Calculate the concentration of [H+]
- * Calculate pH

Example

- * A 40.00 mL solution of 0.100 mol/L hydrochloric acid, HCl is titrated with 20 mL of 0.100 mol/L NaOH.
- * NaOH + HCl -> NaCl + H2O
- * Calculate the pH of the solution of the solution before the equivalence point.

* Calculate moles of each

nhci= C x V

NNaOH= C X V

* Calculate moles of each

nhc|= C x V C= 0.100 M V=0.04 L NNaOH = C x V C = 0.100 M V=0.02 L

* Calculate moles of each

 $n_{HCI} = C \times V$ C = (0.100)(0.04)V = 0.004 M $M_{NaOH} = C \times V$ C = (0.100)(0.02) V = 0.002 M

* Calculate moles of each

 $n_{HCI}= C \times V$ C=(0.100)(0.04)V=0.004 mol $N_{AOH} = C \times V$ C = (0.100)(0.02) V = 0.002 mol

Which one will you use up? How much of the other substance will remain?

* NaOH will be used up

- * NaOH will be used up
- * This means 0.002 mol of HCI will be left over

- * Calculate concentration of H₃0⁺
- * C = n/V
 - * n = 0.002 mol
 - * V = Vtotal

- * Calculate concentration of H₃0⁺
- * C = n/V
 - * n = 0.002 mol
 - * V = VHCI + VNaOH

- * Calculate concentration of H₃0⁺
- * C = n/V
 - * n = 0.002 mol
 - * V = 0.04 L + 0.02L
 - * V= 0.06L

- * Calculate concentration of H₃0⁺
- * C = n/V
 - * n = 0.002 mol
 - * V = 0.04 L + 0.02L
 - * V= 0.06L

- * Calculate concentration of H₃0⁺
- * C = n/V
 - * C= 0.002 mol / 0.06 L
 - * C = 0.033 M

- * Use [H30+] to calculate pH
 - * pH = log [H30+]
 - * pH = log (0.033)
 - * pH= 1.48

Equivalence point of a strong acid/weak base reaction

- * Calculate the pH at the equivalence point when 40 mL of 0.100 M ammonia is titrated with 40 mL of 0.100 M HCl.
 - * HCI + NH3 -> NH4CI
 - * *When combined with water NH4Cl, which can be represented in the following reaction:
 - * $H_2O(1)$ + NH_4^+ (aq) = NH_3 (aq) + H_3O^+ (aq)

Steps to Solve Weak Acid/Base

- 1) Determine number of moles (Stoichiometry)
- 2) Determine equilibrium concentrations (Using and ICE table)
- 3) Determine new pH using [H+1 ions

* Petermine the number of moles added

Given $C_{NH3} = 0.01M$ V = 40 mL = 0.04 L

NH3 = (C)(V)

Given CHCI = 0.0 1M V= 40 mL = 0.04 L

 $n_{HCI} = (C)(V)$

* Determine the number of moles added

Given $C_{NH3} = 0.01M$ V = 40 mL = 0.04 L

 $n_{NH3} = (C)(V)$ $n_{NH3} = (0.100 M)(0.04 L)$ $n_{NH3} = 0.004 mol$

Given $C_{HCI} = 0.01M$ V = 40 mL = 0.04 L

 $n_{HCl} = (C)(V)$ $n_{HCl} = (0.100 M)(0.04 L)$ $n_{HCl} = 0.004 mol$

- * HCI + NH3 -> NH4CI
 - * Remember that at equivalence point the number of moles is equal.
 - * That means that 0.004 mol of NH₃ will react with 0.004 mol of HCI.

- * We now want to determine the amount of NH4Cl created after the titration. We can achieve this two ways:
 - * Stoichiometry
 - * ICE Table

* Using Stoichiometry

HCI

+

 $NH_3 \rightarrow$

n= 0.004 mol

NH4CI

N= ?

* Using Stoichiometry

HCI

+

NH3 ->

n= 0.004 mol

NH4CI

n= ?

Molar Ratio

* Using Stoichiometry

HCI

+

 $NH_3 \rightarrow$

n= 0.004 mol

NH4CI

n= ?

1 = 0.004 mol 1 NNH4CI

* Using Stoichiometry

HCI

 $NH_3 \rightarrow$

n= 0.004 mol

NH4CI

n= 0.004 mol

1 = 0.004 mol 1 NNH4CI

* Using an ICE chart

	* HCl +	NH3 ->	NH ₄ Cl
	0.004	0.004	0
C	- X	-X	+ X
E			

* Complete an ICE chart

	* HCl +	NH3 ->	NH ₄ Cl
	0.004	0.004	0
C		-X	+X
E	0	0	

* Complete an ICE chart

	* HCI +	NH3 ->	NH ₄ Cl
	0.004	0.004	0
C	-0.004	-0.004	+ 0.004
E	0	0	0.004

Steps to Solve

- 1) Determine number of moles (Stoichiometry)
- 2) Determine equilibrium concentrations (Using and ICE table)
- 3) Determine new pH using [H+1 ions

* Petermine the number concentration of NH4Cl at the equivalence point

Given
n= 0.004 mol
V = total volume present

* Petermine the number concentration of NH4Cl at the equivalence point

```
Given

n= 0.004 mol

V = total volume present

= 40 ml + 40 ml = 80 ml

= 0.08 l
```

* Petermine the number concentration of NH4Cl at the equivalence point

C= n/v C= 0.004 mol/ 0.08 L C= 0.050 M

* Now use an ICE chart to determine [H30+1

H ₂ O _(I) +	$NH4^+ (aq) \rightarrow$	NH3 (aq) +	H30 ⁺ (aq)
	0.050 M	0	0
C			
E			

* Now use an ICE chart to determine [H30+1

H ₂ O(1) +	$NH4^+ (aq) \rightarrow$	NH3 (aq) +	H30+(aq)
	0.050 M	0	0
C	-X	+X	+ X
E			

* Now use an ICE chart to determine [H30+1

H20(1) +	$NH4^+ (aq) \rightarrow$	NH3 (aq) +	H30*(aq)
	0.050 M	0	0
C	-X	+X	+ X
	0.050 - x	+X	+x

* Solve for x

* Solve for x $H_2O(1) + NH_4^+ (aq) \rightarrow NH_3 (aq) + H_3O^+ (aq)$

Ka= [NH3][H30+]
[NH4+]

From appendix: Ka = 5.6 x 10-10

* Solve for x

 $H_2O(1) + NH_4^+ (aq) \rightarrow NH_3 (aq) + H_3O^+ (aq)$

Ka = [NH3][H30+]

[NH4+]

 $5.6 \times 10^{-10} = (x)^2$

(0.05 - x)

From appendix: $K_a = 5.6 \times 10^{-10}$

From appendix: Ka = 5.6 x 10-10

* Solve for x

 $H_2O(1) + NH_4^+ (aq) \rightarrow NH_3 (aq) + H_3O^+ (aq)$

Ka = [NH3][H30+]

[NH4+]

 $5.6 \times 10^{-10} = (x)^2$

(0.05 - x)

Small Ka, can use Hundred's Rule

* Solve for x

 $5.6 \times 10^{-10} = (x)^2$

(0.05)

Small Ka, can use Hundred's Rule

* Solve for x

 $5.6 \times 10^{-10} = (x)^2$

(0.05)

 $(5.6 \times 10^{-10})(0.05) = x^2$

Small Ka, can use Hundred's Rule

* Solve for x

 $5.6 \times 10^{-10} = (x)^2$

(0.05)

 $(5.6 \times 10^{-10})(0.05) = x^2$

 $x = \sqrt{(5.6 \times 10^{-10})(0.05)}$

 $x = 5.29 \times 10^{-6}$

Small Ka, can use Hundred's Rule

- * From the ICE table, the [H30*] was equal to x
 - * Therefore [H₃0+] = 5.29 x 10-6 M

Steps to Solve

- 1) Determine number of moles (Stoichiometry)
- 2) Determine equilibrium concentrations (Using and ICE table)
- 3) Determine new pH using [H+1 ions

* Now Solve for pH

 $pH = -log LH_30+1$

* Now Solve for pH

Homework

* p. 535 #92