Acid-Base Reactions

Terms to remember

* Neutralization: Acid + base \rightarrow salt + water, a double displacement reaction
* Titration: An lab technique to determine the concentration, adding an acid to a base
* Equivalence point: the point at which the reaction is complete (Same moles of each)

Titration Curve

* Titration curve: a graph of the pH of an acid (or base) against the volume of an added base (or acid)
* Equivalence point is equal to the midpoint on the titration curve.

volume of alkali added $\left(\mathrm{cm}^{3}\right)$

Steps to Solve Strong Acid/Base

* Determine moles of each and which substance will remain.
* Calculate the concentration of $[H+]$
* Calculate pH

Example

* A 40.00 mL solution of $0.100 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid, HCl is titrated with 20 mL of $0.100 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$.
* $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
* Calculate the pH of the solution of the solution before the equivalence point.

Solution

* Calculate moles of each

$n_{H C l}=\mathbf{C} \times V$
$n_{\mathrm{NaOH}}=\mathrm{CXV}$

Solution

* Calculate moles of each

nhcle CXV
$C=0.100 \mathrm{M}$
$V=0.04 \mathrm{~L}$

$\mathrm{nNaOH}^{\mathrm{N}}=\mathrm{CXV}$
$C=0.100 \mathrm{M}$
$V=0.02 \mathrm{~L}$

Solution

* Calculate moles of each

nнCl $\mathrm{C} \times \mathrm{V}$
$\mathrm{C}=(0.100)(0.04)$
$\mathrm{V}=0.004 \mathrm{M}$
$\mathrm{nNaOH}^{\mathrm{Na}} \mathrm{CXV}$
$C=(0.100)(0.02)$
$V=0.002 \mathrm{M}$

Solution

* Calculate moles of each

nhcl= CXV
$C=(0.100)(0.04)$
$V=0.004 \mathrm{~mol}$

$\mathrm{nNaOH}^{\mathrm{N}}=\mathrm{CXV}$
$C=(0.100)(0.02)$
$V=0.002 \mathrm{~mol}$

Which one will you use up? How much of the other substance will remain?

Solution

* NaOH will be used up

Solution

* NaOH will be used up
* This means 0.002 mol of HCl will be left over

Solution

* Calculate concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
* $C=n / V$
* $n=0.002 \mathrm{~mol}$
* $V=V_{\text {total }}$

Solution

* Calculate concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
* $C=n / V$
* $n=0.002 \mathrm{~mol}$
* $V=V_{\mathrm{HCl}}+\mathrm{V}_{\mathrm{NaOH}}$

Solution

* Calculate concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\begin{aligned}
& * C=n / V \\
& * n=0.002 \mathrm{~mol} \\
& * V=0.04 L+0.02 L \\
& * V=0.06 L
\end{aligned}
$$

Solution

* Calculate concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$

$$
\begin{aligned}
& * C=n / V \\
& * n=0.002 \mathrm{~mol} \\
& * V=0.04 L+0.02 L \\
& * V=0.06 L
\end{aligned}
$$

Solution

* Calculate concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
* $C=n / V$
* $C=0.002 \mathrm{~mol} / 0.06 \mathrm{~L}$
* $C=0.033 \mathrm{M}$

Solution

* Use $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$to calculate pH

$$
\begin{aligned}
& * \mathrm{pH}=-\log [H 30+] \\
& * \mathrm{pH}=-\log (0.033) \\
& * \mathrm{pH}=1.48
\end{aligned}
$$

Equivalence point of a strong acid/weak base reaction

* Calculate the pH at the equivalence point when 40 mL of 0.100 M ammonia is titrated with 40 mL of 0.100 M HCl .
$* \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
* *When combined with water $\mathrm{NH}_{4} \mathrm{Cl}$, which can be represented in the following reaction:
* $\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}^{+}{ }_{(\text {laq })} \rightleftharpoons \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Steps to Solve Weak Acid/Base

1) Determine number of moles (Stoichiometry)
2) Determine equilibrium concentrations (Using and ICE table)
3) Determine new pH using $\left[\mathrm{H}^{+}\right]$ions

Solution

* Determine the number of moles added

Given
$C_{\text {NH3 }}=0.01 \mathrm{M}$
$V=40 \mathrm{~mL}=0.04 \mathrm{~L}$
$n_{n+3}=(C)(V)$

Given
$C_{H C l}=0.01 \mathrm{M}$
$V=40 \mathrm{~mL}=0.04 \mathrm{~L}$
$n_{H C I}=(C)(V)$

Solution

* Determine the number of moles added

$$
\begin{aligned}
& \text { Given } \\
& G_{\text {NH }}=0.01 \mathrm{M} \\
& V=40 \mathrm{~mL}=0.04 \mathrm{~L} \\
& n_{N H 3}=(C)(\mathrm{V}) \\
& n_{N H 3}=(0.100 \mathrm{M})(0.04 \mathrm{~L}) \\
& n_{\text {NH }}=0.004 \mathrm{~mol}
\end{aligned}
$$

Given

$$
\begin{aligned}
& C_{\text {Hel }}=0.01 \mathrm{M} \\
& V=40 \mathrm{~mL}=0.04 \mathrm{~L}
\end{aligned}
$$

$$
\begin{aligned}
& n_{H C I}=(C)(V) \\
& n_{H C I}=(0.100 \mathrm{M})(0.04 \mathrm{~L}) \\
& n_{H C I}=0.004 \mathrm{~mol}
\end{aligned}
$$

Solution

* $\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
* Remember that at equivalence point the number of moles is equal.
* That means that 0.004 mol of NH_{3} will react with 0.004 mol of HCl .

Solution

* We now want to determine the amount of $\mathrm{NH}_{4} \mathrm{Cl}$ created after the titration. We can achieve this two ways:
* Stoichiometry
* ICE Table

Solution

* Using Stoichiometry $\mathrm{HCl}+\underset{n=0.004 \text { mol }}{\mathrm{NH}_{3} \rightarrow} \underset{n=?}{\mathrm{NH}_{4} \mathrm{Cl}}$

Solution

* Using Stoichiometry $\mathrm{HCl}+\underset{n=0.004 \text { mol }}{\mathrm{NH}_{3} \rightarrow} \underset{n=?}{\mathrm{NH}_{4} \mathrm{Cl}}$

Molar Ratio

Solution

* Using Stoichiometry HCI + $+$

$\mathrm{NH}_{4} \mathrm{Cl}$ $n=$?
$\frac{1}{1}=\underset{\substack{0.004 \\ \text { nNн4 } 4 \mathrm{Cl}}}{0.01}$

Solution

* Using Stoichiometry HCI + $+\quad \mathrm{NH}_{3} \rightarrow$
$\mathrm{NH}_{4} \mathrm{Cl}$
$n=0.004 \mathrm{~mol}$
$\frac{1}{1}=\underset{\substack{0.004 \\ \text { nNH }^{2}+\mathrm{Cl}}}{0.01}$

Solution

* Using an ICE chart

$* \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow$			
1	0.004	0.004	0
6	$-x$	$-x$	$+x$
E			

Solution

* Complete an ICE chart

$* \mathrm{HCl}+$	$\mathrm{NH}_{3} \rightarrow$	$\mathrm{NH}_{4} \mathrm{Cl}$	
1	0.004	0.004	0
6	$-x$	$-x$	$+x$
E	0	0	

Solution

* Complete an ICE chart

$* \mathrm{HCl}+\mathrm{NH}_{3} \rightarrow$			
NH 4 Cl			
1	0.004	0.004	0
0	-0.004	-0.004	+0.004
E	0	0	0.004

Steps to Solve

1) Determine number of moles (Stoichiometry)
2) Determine equilibrium concentrations (Using and ICE table)
3) Determine new pH using $\left[H^{+}\right]$ions

Solution

* Determine the number concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ at the equivalence point

Given
$n=0.004 \mathrm{~mol}$
$V=$ total volume present

Solution

* Determine the number concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ at the equivalence point

Given

$$
\begin{aligned}
n & =0.004 \text { mol } \\
V & =\text { total volume present } \\
& =40 \mathrm{~mL}+40 \mathrm{~mL}=80 \mathrm{~mL} \\
& =0.08 \mathrm{~L}
\end{aligned}
$$

Solution

* Determine the number concentration of $\mathrm{NH}_{4} \mathrm{Cl}$ at the equivalence point
$C=n / v$
$C=0.004 \mathrm{~mol} / 0.08 \mathrm{~L}$
$C=0.050 \mathrm{M}$

Solution

* Now use an ICE chart to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}{ }^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

I	0.050 M	0	0
C			
E			

Solution

* Now use an ICE chart to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}{ }_{(\text {(aq) }} \rightarrow \mathrm{NH}_{3(\text { (aq) })}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq) }}$

1	0.050 M	0	0
6	$-x$	$+x$	$+x$
E			

Solution

* Now use an ICE chart to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}{ }^{+}\left(\right.$aq) $\rightarrow \mathrm{NH}_{3(\text { aq })}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq)})$

I	0.050 M	0	0
σ	$-x$	$+x$	$+x$
E	$0.050-x$	$+x$	$+x$

Solution

* Solve for x

$\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{NH}_{4}^{+}($aq $) \rightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{NH}_{4}{ }^{+}\right]$

Solution

* Solve for x
$\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{NH}_{3} 3 \mathrm{TH}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{NH}_{4}{ }^{+}\right]$

From appendix: $K_{a}=5.6 \times 10^{-10}$

Solution

* Solve for x

$\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NH}_{4}{ }^{+}\left(\right.$aq) $\rightarrow \mathrm{NH}_{3}($ aq) $)+\mathrm{H}_{3} \mathrm{O}^{+}$(aq)

$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{O}^{+}\right]$
From appendix: $K_{a}=5.6 \times 10^{-10}$
$\left[\mathrm{NH}_{4}{ }^{+}\right]$
$5.6 \times 10^{-10}=(x)^{2}$

$$
(0.05-x)
$$

Solution

* Solve for x

$\mathrm{H}_{2} \mathrm{O}(1)+\mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

$\mathrm{K}_{2}=\left[\mathrm{NH}_{3}\right]_{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}$

From appendix: $K_{a}=5.6 \times 10^{-10}$

$\left[\mathrm{NH}_{4}{ }^{+}\right]$
$5.6 \times 10^{-10}=(x)^{2}$

$$
(0.05-x)
$$

Small Ka, can use Hundred's Rule

Solution

* Solve for x

$5.6 \times 10^{-10}=(x)^{2}$
(0.05)

Small Ka, can use Hundred's Rule

Solution

* Solve for x

$5.6 \times 10^{-10}=(x)^{2}$
(0.05)
$\left(5.6 \times 10^{-10}\right)(0.05)=x^{2}$

Small Ka, can use Hundred's Rule

Solution

* Solve for x

$5.6 \times 10^{-10}=(x)^{2}$

(0.05)
$\left(5.6 \times 10^{-10}\right)(0.05)=x^{2}$
$x=\sqrt{ }\left(5.6 \times 10^{-10}\right)(0.05)$
$x=5.29 \times 10^{-6}$

Solution

* From the ICE table, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$was equal to X

$$
\text { * Therefore }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.29 \times 10^{-6} \mathrm{M}
$$

Steps to Solve

1) Determine number of moles (Stoichiometry)
2) Determine equilibrium concentrations (Using and ICE table)
3) Determine new pH using $\left[\mathrm{H}^{+}\right]$ions

Solution

* Now Solve for pH

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Solution

* Now Solve for pH

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} 0^{+}\right] \\
& \mathrm{pH}=-\log \left(5.29 \times 10^{-6}\right) \\
& \mathrm{pH}=5.27
\end{aligned}
$$

Homework

* p. 535 \#92

